Chapter 3
Computing with Numbers

Objectives
- To understand the concept of data types.
- To be familiar with the basic numeric data types in Python.
- To understand the fundamental principles of how numbers are represented on a computer.

Objectives (cont.)
- To be able to use the Python math library.
- To understand the accumulator program pattern.
- To be able to read and write programs that process numerical data.

Numeric Data Types
- The information that is stored and manipulated by computers programs is referred to as data.
- There are two different kinds of numbers!
 - (5, 4, 3, 6) are whole numbers – they don’t have a fractional part
 - (.25, .10, .05, .01) are decimal fractions

Numeric Data Types
- Inside the computer, whole numbers and decimal fractions are represented quite differently!
 - We say that decimal fractions and whole numbers are two different data types.
 - The data type of an object determines what values it can have and what operations can be performed on it.

- Whole numbers are represented using the integer (int for short) data type.
- These values can be positive or negative whole numbers.
Numeric Data Types

- Numbers that can have fractional parts are represented as floating point (or float) values.
- How can we tell which is which?
 - A numeric literal without a decimal point produces an int value
 - A literal that has a decimal point is represented by a float (even if the fractional part is 0)

Python has a special function to tell us the data type of any value.
```
>>> type(3)
>>> type(3.1)
>>> type(3.0)
>>> myint = -32
>>> type(myint)
>>> myfloat = 32.0
>>> type(myfloat)
>>> mystery = myint * myfloat
>>> type(mystery)
```

Operations on ints produce ints, operations on floats produce floats.
```
>>> 3.0 + 4.0
>>> 3 + 4
>>> 3.0 * 4.0
>>> 3 * 4
>>> 10.0 / 3.0
>>> 10 / 3
>>> 10 % 3
>>> abs(5)
>>> abs(-3.5)
```

Numeric Data Types

- Why do we need two number types?
 - Values that represent counts can’t be fractional (you can’t have 3 ½ quarters)
 - Most mathematical algorithms are very efficient with integers
 - The float type stores only an approximation to the real number being represented!
 - Since floats aren’t exact, use an int whenever possible!

Integer division always produces an integer, discarding any fractional result.
- That’s why 10/3 = 3!
- Think of it as ‘gozinta’, where 10/3 = 3 since 3 gozinta (goes into) 10 3 times (with a remainder of 1)
- 10%3 = 1 is the remainder of the integer division of 10 by 3.

Now you know why we had to use 9.0/5.0 rather than 9/5 in our Celsius to Fahrenheit conversion program!
- a = (a/b)(b) + (a%b)
Using the Math Library

- Besides (+, -, *, /, **, %, abs), we have lots of other math functions available in a math library.
- A library is a module with some useful definitions/functions.

```
import math  # Makes the math library available.
```

quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: This program crashes if the equation has no real roots.
def main():
 print "This program finds the real solutions to a quadratic" print
 a, b, c = input("Please enter the coefficients (a, b, c): ")
 discRoot = math.sqrt(b * b - 4 * a * c)
 root1 = (-b + discRoot) / (2 * a)
 root2 = (-b - discRoot) / (2 * a)
 print
 print "The solutions are": root1, root2
main()

Using the Math Library

- Let's write a program to compute the roots of a quadratic equation!

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

- The only part of this we don't know how to do is find a square root... but it's in the math library!

```
def main():
    print "This program finds the real solutions to a quadratic" print
    a, b, c = input("Please enter the coefficients (a, b, c): ")
    discRoot = math.sqrt(b * b - 4 * a * c)
    root1 = (-b + discRoot) / (2 * a)
    root2 = (-b - discRoot) / (2 * a)
    print
    print "The solutions are": root1, root2
main()
```

Using the Math Library

- To use a library, we need to make sure this line is in our program:

```
import math
```

- Importing a library makes whatever functions are defined within it available to the program.

```
import math  # Makes the math library available.
```

Using the Math Library

- To access the sqrt library routine, we need to access it as math.sqrt(x).
- Using this dot notation tells Python to use the sqrt function found in the math library module.
- To calculate the root, you can do
discRoot = math.sqrt(b*b - 4*a*c)

```
import math  # Makes the math library available.
```

This program finds the real solutions to a quadratic
Please enter the coefficients [a, b, c]: -2, 1, 3
The solutions are: 1.5, 1

```
import math  # Makes the math library available.
```

What do you suppose this means?
This program finds the real solutions to a quadratic
Please enter the coefficients [a, b, c]: 1, 2, 3
Traceback (most recent call last):
 File "pythontutor.py", line 1, in ...
 File "C:\Users\Terry\My Documents\Teaching\SEE1101\Examples\\Code\quadratic.py", line 11, in main
discRoot = math.sqrt(b*b - 4*a*c)
 Value error: math domain error

>>>
Math Library
- If $a = 1$, $b = 2$, $c = 3$, then we are trying to take the square root of a negative number!
- Using the sqrt function is more efficient than using **. How could you use ** to calculate a square root?

Accumulating Results: Factorial
- Say you are waiting in line with five other people. How many ways are there to arrange the six people?
- $720 \rightarrow 720$ is the factorial of 6 (abbreviated 6!)
- Factorial is defined as:
 \[n! = n(n-1)(n-2) \ldots (1) \]
- So, $6! = 6*5*4*3*2*1 = 720$

Accumulating Results: Factorial
- How we could we write a program to do this?
- Input number to take factorial of, n
- Compute factorial of n, fact
- Output fact

Accumulating Results: Factorial
- How did we calculate 6!?
 - $6*5 = 30$
 - Take that 30, and $30 * 4 = 120$
 - Take that 120, and $120 * 3 = 360$
 - Take that 360, and $360 * 2 = 720$
 - Take that 720, and $720 * 1 = 720$

Accumulating Results: Factorial
- What’s really going on?
- We’re doing repeated multiplications, and we’re keeping track of the running product.
- This algorithm is known as an accumulator, because we’re building up or accumulating the answer in a variable, known as the accumulator variable.

Accumulating Results: Factorial
- The general form of an accumulator algorithm looks like this:
 - Initialize the accumulator variable
 - Loop until final result is reached
 - Update the value of accumulator variable
Accumulating Results: Factorial

- It looks like we’ll need a loop!
 - `fact = 1`
 - `for factor in [6, 5, 4, 3, 2, 1]: fact = fact * factor`
- Let’s trace through it to verify that this works!

Accumulating Results: Factorial

- Why did we need to initialize `fact` to 1?
 - There are a couple reasons...
 - Each time through the loop, the previous value of `fact` is used to calculate the next value of `fact`. By doing the initialization, you know `fact` will have a value the first time through.
 - If you use `fact` without assigning it a value, what does Python do?

Accumulating Results: Factorial

- Since multiplication is associative and commutative, we can rewrite our program as:
 - `fact = 1`
 - `for factor in [2, 3, 4, 5, 6]: fact = fact * factor`
- Great! But what if we want to find the factorial of some other number??

Accumulating Results: Factorial

- What does `range(n)` return?
 - 0, 1, 2, 3, ..., n-1
 - `range` has another optional parameter!
 - `range(start, n)` returns `start`, `start + 1`, ..., n-1
 - But wait! There’s more!
 - `range(start, n, step)`
 - `start`, `start+step`, ..., n-1

Accumulating Results: Factorial

- Let’s try some examples!
 - `>>> range(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`
 - `>>> range(5,10) [5, 6, 7, 8, 9]`
 - `>>> range(5,10,2) [5, 7, 9]`

Accumulating Results: Factorial

- Using this souped-up `range` statement, we can do the range for our loop a couple different ways.
 - We can count up from 2 to n:
 - `range(2, n+1)`
 - (Why did we have to use n+1?)
 - We can count down from n to 1:
 - `range(n, 1, -1)`
Accumulating Results: Factorial

- Our completed factorial program:
  ```python
  # factorial.py
  # Program to compute the factorial of a number
  # Illustrates for loop with an accumulator
  def main():
    n = input("Please enter a whole number: ")
    fact = 1
    for factor in range(n,1,-1):
      fact = fact * factor
    print "The factorial of", n, "is", fact
  main()
  ```

The Limits of Int

- What is 100!?
  ```python
  >>> main()
  Please enter a whole number: 100
  The factorial of 100 is
  93326215443944152681699288856266700490715968264
  38162146889526536410037343923758251185210916686400000000
  00000000000000000
  ```

 Wow! That's a pretty big number!

- Newer versions of Python can handle it, but...

  ```python
  >>> 2**30
  1073741824
  >>> 2**31
  Traceback (innermost last):
  File "<pyshell#3>", line 1, in ?
  2**31
  OverflowError: integer pow()
  >>>
  ```

- What's going on?
 - While there are an infinite number of integers, there is a finite range of ints that can be represented.
 - This range depends on the number of bits a particular CPU uses to represent an integer value. Typical PCs use 32 bits.

The Limits of Int

- Typical PCs use 32 bits
 - That means there are 2^{32} possible values, centered at 0.
 - This range then is -2^{31} to $2^{31}-1$. We need to subtract one from the top end to account for 0.
 - We can test this with an old version of Python.
The Limits of Int

- It blows up between 2^{30} and 2^{31} as we expected. Can we calculate $2^{31}-1$?

```python
>>> 2**31-1
OverflowError: integer pow()
```

- What happened? It tried to evaluate 2^{31} first!

```python
>>> 2**31-1
Traceback (innermost last):
  File "<pyshell#5>", line 1, in ?
    2**31-1
OverflowError: integer pow()
```

The Limits of Int

- We need to be more clever!

 - $2^{31} = 2^{30}+2^{30}$
 - $2^{31}-1 = 2^{30}.1+2^{30}$

- We're subtracting one from each side!

```python
>>> 2**30+1 << 30
2147483648
>>> 2147483648+1
Traceback (innermost last):
  File "<pyshell#7>", line 1, in ?
    2147483648+1
OverflowError: integer addition
```

The Limits of Int

- What have we learned?

 - The largest int value we can represent is 2147483647

- How do modern versions of Python handle this?

```python
>>> main()
Please enter a whole number: 15
The factorial of 15 is 1.307674368e+012
```

Handling Large Numbers: Long Ints

- Does switching to `float` data types get us around the limitations of `int`?

 - If we initialize the accumulator to 1.0, we get

```python
>>> main()
Please enter a whole number: 15
The factorial of 15 is 1.307674368e+012
We no longer get an exact answer!
```

Handling Large Numbers: Long Ints

- Very large and very small numbers are expressed in scientific or exponential notation.

 - $1.307674368e+012$ means $1.307674368 \times 10^{12}$

- Here the decimal needs to be moved right 12 decimal places to get the original number, but there are only 9 digits, so 3 digits of precision have been lost.

```python
>>> 1.307674368e+012
1.307674368e+012
```

Handling Large Numbers: Long Ints

- Floats are approximations

 - Floats allow us to represent a larger range of values, but with lower precision.

- Python has a solution, the `long int`!

- Long Ints are not a fixed size and expand to handle whatever value it holds.
Handling Large Numbers: Long Ints

- To get a long int, put “L” on the end of a numeric literal.
- 5 is an int representation of five
- 5L is a long int representation of five

```
>>> 5L
5L
>>> 21L
21L
>>> 21L * 3L
2147483648L
>>> type(2L)
<type 'long'>
>>> 100000000000000000000000000000000000L + 25
10000000000000000000000000000000025L
```

Type Conversions

- For Python to evaluate this expression, it must either convert 5.0 to 5 and do an integer division, or convert 2 to 2.0 and do a floating point division.
- Converting a float to an int will lose information
- Ints can be converted to floats by adding “.0”

```
>>> x = 2147483647
>>> x = x + 1
>>> x
2147483648L
>>> type(x)
<type 'long'>
>>> print x
2147483648
```
Type Conversions

- To fix this problem, tell Python to change one of the values to floating point:
 - `average = float(sum)/n`
- We only need to convert the numerator because now Python will automatically convert the denominator.

Type Conversions

- Why doesn't this work?
 - `average = float(sum)/n`
 - `sum = 22, n = 5, sum/n = 4.0`
 - Python also provides `int()`, and `long()` functions to convert numbers into ints and longs.

Type Conversions

```python
>>> float(22/5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> long(3.9)
3L
>>> float(int(3.9))
3.0
>>> int(float(3.9))
4
>>> int(float(3))
3
```

Type Conversions

- The `round` function returns a float, rounded to the nearest whole number.

```python
>>> round(3.9)
4.0
>>> round(3)
3.0
>>> int(round(3.9))
4
>>> int(round(3))
3
```