
The Game of Set R© – An Ideal Example for Introducing
Polymorphism and Design Patterns

Stuart Hansen
Computer Science Department

University of Wisconsin — Parkside
Kenosha, WI 53141

hansen@cs.uwp.edu

ABSTRACT
This paper presents an object–oriented design for a solitaire ver-
sion of the game of Set1. The design is responsibility driven and
illustrates polymorphism and several fundamental design patterns,
including Flyweight, Strategy and Factory. It introduces each of
these to solve particular problems within the design. The direct
application of these concepts and the interest our students show in
the game make Set an ideal example for classroom discussions and
assignments.

Categories and Subject Descriptors
D.1.5 [Software]: Programming Techniques—Object–Oriented Pro-
gramming; J.m [Computer Applications]: Miscellaneous

General Terms
Design, Languages

Keywords
Design Patterns

1. INTRODUCTION
Polymorphism and design patterns are frequently treated as ad-

vanced topics in object–oriented programming. They are intro-
duced in upper division courses when students start dealing with
issues of large scale development. Efforts are being made to in-
troduce these ideas earlier in the curriculum [1, 5, 6, 7, 8, 9], but
broad acceptance of their early introduction has not been achieved.
This is partly because it is difficult to find sample problems that
are approachable early in the curriculum and whose solutions use
polymorphism and design patterns in simple direct ways.

The game of Set is an ideal example for introducing these con-
cepts. An object–oriented design of the game uses polymorphism
and design patterns in ways that are easy for our students to grasp.

1Set is a Registered Trademark of Set Enterprises Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

Figure 1: The cards in this figure form a set. They all contain
two ovals so they agree on the SYMBOL and NUMBER proper-
ties. Each has a different SHADING and each has a different
COLOR (here represented by varying shades of gray).

One of the strengths of this example is that it neatly shows the tran-
sition from simpler, already understood ideas like class–instance,
to using the more complex notions of polymorphism and design
patterns. Our discussion in this paper follows the same flow of the
ideas as presented during our class discussions.

2. THE GAME OF SET
Set is a simple card game. The object of the game is to identify a

“Set” of three cards from 12 cards laid out on the table. Each card
has a variation of the following four features:

(A) COLOR: Each card is red, green, or purple.
(B) SYMBOL: Each card contains ovals, squiggles, or diamonds.
(C) NUMBER: Each card has one, two, or three symbols.
(D) SHADING: Each card’s symbols are solid, open, or striped.

A “Set” consists of three cards in which each feature is EITHER
the same on each card OR is different on each card.[2] When a
set is found, those cards are removed and replaced by three new
cards from the deck. The deck is made up of 81 unique cards,
containing all the possible combinations of the four features. The
game continues until the deck is exhausted.

Figures 1 and 2 show sets. In Figure 1 all three cards contain
two ovals, so the set property is met for the NUMBER and SYMBOL

features. The first is solid, the second open and the third striped,
so they disagree on SHADING. The figure uses different shades of
gray to represent colors. The three cards disagree on COLOR. Since
the cards agree or disagree on each feature, they form a set. In
Figure 2 the cards agree on COLOR and SHADING. They disagree
on SYMBOL and NUMBER.

Figure 3 shows three cards that do not form a set. There are

Figure 2: The three cards in this figure form a set. Each one
contains a different SYMBOL and a different NUMBER of sym-
bols. They are all striped and they are all the same COLOR.

Figure 3: The outside two cards each contain one symbol, while
the middle card contains three symbols. The set property is
violated for NUMBER. The other features do not matter. The
cards do not form a set.

two cards with one symbol and one card with three symbols. The
NUMBER feature is neither different on all three cards nor the same
on all three, so they do not form a set.

We have developed an object–oriented design of Set as an exam-
ple in several sections of an introductory Java course. The students
in this course have programming experience in other languages.
Their software development skills are typically similar to those of
advanced CS2 students.

Our design is for a solitaire version of Set. Figure 4 shows an
implementation of the design during a run. Twelve cards are laid
out in a 3x4 grid. The user identifies sets by clicking on the cards.

Set is an intriguing game to the students. Several of our students
have purchased decks of Set cards following our class discussions.
The author has visited the student lab several times when games
were in progress. While Set may be played competitively, winning
and losing seem secondary to the simple pleasure of finding sets.
The students’ fascination with the game helps motivate and ener-
gize the class discussions.

3. DESIGNING THE SET CARDS
A solid design for the individual cards is imperative if the over-

all application is to work well. There are only two operations in
which the cards participate. Cards are displayed on the screen and
collections of three cards are checked to determine if they form a
set. The goal of this section is to develop a card design that cleanly
implements these operations.

The card’s features are constructed when the deck is created. The
features do not change during the run of the program. Figure 5

Figure 4: This figure shows the top–level GUI of our Set pro-
gram. The game is played by displaying 12 cards and searching
for sets. When a set is found, those cards are replaced by three
new cards. In this figure, numbering the cards from 1–12 in
row major order, cards 1, 7 and 11 form a set, as do cards 6, 7
and 9.

shows a high level class diagram for Set cards. Each of the card’s
four features becomes an attribute of the Card class. A few of our
better students immediately query why two of the features are rep-
resented by classes and the other two are represented by interfaces.
This question is central to the introduction of polymorphism and we
postpone its discussion until we have implemented the two simpler
features: COLOR and NUMBER.

3.1 Comparing Cards
Determining if three cards form a set requires their features to

be checked for equality. The features are represented by objects, so
we must guarantee that object equality means the same thing as fea-
ture equality. For example, two cards containing squiggles should
have their symbol attributes equal, since the SYMBOL feature is
the same on both. Similarly, two striped cards should have equal
shading even if one fills symbols with green stripes and the other
fills symbols with purple stripes.

The solution to this problem usually suggested by our students
is to write an equals() method for each attribute. Java’s AWT
Color class already contains an equals() method. We can use
this method to check for color equality. Each of the other at-
tributes would require a similar equals() method. This solution
works, but requires tedious programming.

3.1.1 The Flyweight Design Pattern
A much simpler solution is to use the Flyweight Design Pat-

tern[3]. The flyweight pattern uses shared attribute objects to sup-
port multiple objects having the same attribute values. The fly-
weight pattern can be used for each of the features. For example,

Number
Shading

<<interface>><<interface>>
Color

Card

Symbol

Figure 5: A card contains four features that uniquely identify it
in the deck. The features are used for displaying the cards and
determining if three cards form a set.

we will use the same squiggle object for every card that contains
squiggles. The squiggle symbol is the same on a card that has three
green striped squiggles as on a card that has one red solid squiggle,
so sharing the object should not pose any problems.

The flyweight pattern limits the number of objects needed for the
attributes. There are 81 cards, each with four features. If each card
has a unique copy of its attributes the implementation will have
81 ∗ 4 = 324 attribute objects. Each feature has three possible
values. Using the flyweight pattern there will be only 4 ∗ 3 = 12

attribute objects shared among all the cards.
In our design, the major advantage of using the flyweight pattern

is that it lets us compare attributes directly. In our Java implementa-
tion we can compare colors, numbers, symbols and shadings using
== and !=. These work because an object always == itself. There
is only one instance of the squiggle object shared among the cards,
so two cards that are both squiggles must share that instance and
card1.symbol == card2.symbol.

3.1.2 Checking for a Set
Now that we have an efficient way to compare attributes, the

game can determine if three cards form a set. The conditions needed
for this are quite complex. Java–like pseudocode for a method to
check if the symbol attribute satisfies the set property is:

boolean isSetSymbol (Card card1, Card card2,
Card card3)

{
if ((card1.symbol == card2.symbol

&& card2.symbol == card3.symbol)
|| (card1.symbol != card2.symbol

&& card2.symbol != card3.symbol
&& card1.symbol != card3.symbol))

return true
else

return false
}

Each of the other features requires a similar method. Three cards form a
set if and only if all four isSet...() methods return true.

3.2 Displaying the Cards
Getting students to think in terms of assigning responsibilities to objects

is one of the major challenges we face in teaching object–oriented design
[4, 10]. Displaying Set cards provides an excellent example of distributing
responsibilities to the appropriate object. Cards are responsible for knowing
how to draw themselves, but depend on their attributes to accomplish this.
Some attributes passively provide data, while others take active responsibil-
ity for some aspect of the drawing.

3.2.1 Color
Every card is assigned a color. The card’s color is used to both draw

the symbols and, for solid and striped cards, to assist in filling the symbols.

Java’s AWT Color class provides all the functionality needed. When draw-
ing the symbols, the color is treated as a passive property which is passed
to the graphics environment. The responsibilities of color when filling sym-
bols is more complex and is discussed below when considering the card’s
shading.

3.2.2 Number/Locations
The card’s NUMBER tells how many SYMBOLs are on the card. When im-

plementing a card, however, there is the additional responsibility of know-
ing where each of the symbols is to be drawn. It is natural to assign this
responsibility to the number attribute, as well. All cards with three sym-
bols will draw those symbols at the same relative locations. number is no
longer a simple integer, but is implemented as a vector of (x,y) locations.
In fact, in our implementation, the attribute is named locations. Each
location represents a point where a symbol is to be drawn. The NUMBER
feature is now represented by the size of the locations vector.

3.2.3 Symbol
Color and locations provide data for the card to use when drawing

itself. The symbol provides a shape. When first discussing the design of
Set cards, students often suggest representing the symbol with a string. To
draw the symbol, the card would examine the string and invoke the appro-
priate code. Responsibility driven design suggests, instead, that a symbol
should be responsible for knowing how to draw itself. To accomplish this,
the symbol provides a draw() method that renders its shape onto the
card.

3.2.4 Polymorphism
The symbols provide a concrete, easy to understand application of poly-

morphism. When treated from a responsibility point of view, extending the
concept of an attribute having responsibility for data to having responsibil-
ity for a method is a simple leap for our students.

The cards’ symbols are best implemented using multiple classes. Since
all objects of the same class have identical methods, each symbol type
must belong to its own class to have a different draw() method. Figure 6
shows the class hierarchy for symbols. Symbol is an interface that declares
the draw() method. The Symbol interface is implemented by three dif-
ferent classes, Diamond, Oval and Squiggle. Each class contains a
draw() method that knows how to draw the appropriate shape.

3.2.5 The Strategy Design Pattern
We can bring color, locations and symbol together to see how

the attributes collaborate to draw a card. The card’s draw() method uses
color and locations to guide the drawing. It delegates the responsi-
bility for drawing the shapes to symbol. The notion of an algorithm del-
egating responsibility for some part of its function to an appropriate helper
object is called the Strategy Design Pattern [3]. Utilizing the strategy pat-
tern to draw cards simplifies the card’s draw() code. The trade offs are
that we must define the Symbol interface and that each symbol class is
required to contain a draw() method.

Java–like pseudocode for the card’s draw method is:

void draw () {
setColor(color)
for each location {

symbol.draw (shading)
}

}

3.2.6 Shading
The design of the SHADING feature is conceptually the most complex.

Fortunately, most of our students have experience with paint programs.
They already understand that filling may be done with a solid color or with
a texture, a periodic pattern of multiple colors. Concepts are clarified by
making the correspondence explicit between the drawing needed by the Set
program and the drawing they have previously done.

Java provides a Paint interface that specifies how a region is to be
filled. Classes implementing the Paint interface must supply a paint()
method. Java’s libraries include several classes that implement the inter-
face, including Color and TexturePaint. Figure 7 shows the class
hierarchy used by the Set program for filling symbols. The paint objects
require no new class definitions. They are all instantiations of predefined
Java classes.

draw()

OvalDiamond

draw() draw()

Squiggle

<<interface>>

draw()

Symbol

Figure 6: The symbol attribute determines whether a card
contains diamonds, ovals or squiggles. The Symbol inter-
face requires that each implementing class contain a draw()
method. This method differs in each implementation, drawing
the appropriate shape for that class.

TexturePaint

paint()paint()

Color

Paint
<<interface>>

paint()

Figure 7: The Paint interface and its two implementing
classes are part of Java’s AWT library. Solid and Open cards
use Colors for painting. Striped cards use a TexturePaint
object.

A solid card uses its color attribute for painting. Up to this point,
most students have thought of colors only as passive data objects. Now, the
card’s color takes on an active responsibility for filling regions. Thinking
of colors as active objects, participating in the drawing of the cards, is a
natural result of the responsibility driven approach to design.

An open card uses the background color (off white) for painting. Striped
cards require an instance of TexturePaint. The TexturePaint ob-
ject is constructed using both the card’s color and the background color to
create the texture’s pattern.

3.2.7 The Factory Design Pattern
The card’s shading attribute does not implement the Paint interface.

If it did, the program could not compare shadings using ==. For example, a
solid purple card uses the color purple for painting. A solid red card uses the
color red. They use different paint objects, but have the same shading,
solid. Testing shading for equality should return true, but testing the
Paint objects returns false.

The solution to this problem again lies in design patterns. The Factory
Design Pattern has an object return an instance from a family of related
classes that meet this case’s particular needs [3]. The shading attributes
act as Paint factories. Each shading object has a getPaint()method
that returns a concrete instance of Paint. The getPaint()method uses
the card’s color and the background color to create and return a Paint
object. If the color differs between two cards, different Paint objects
are returned. Thus, all solid cards still share the solid shading attribute, but
use different paint() methods for different colors. The additional level

<<interface>>
Shading

getPaint() getPaint() getPaint()

Solid Striped

getPaint()

Open

Figure 8: The way the symbol is filled is determined by the
card’s shading. The card’s shading does not contain a
paint() method, but rather is a paint factory. It has a get-
Paint() method that returns an appropriate Paint object.
Separating the Paint classes from the Shading classes allows
the programmer to easily compare the shadings.

of indirection lets the program compare shading attributes and still paint
cards appropriately. Figure 8 shows the class hierarchy for Shading.

4. PUTTING THE PIECES TOGETHER
Once the Set cards are designed, the remainder of the design falls into

place relatively quickly. Students have little trouble designing the deck of
cards or the application itself. The deck consists of an array of cards with
methods to shuffle and deal one card. The application has a relatively simple
graphical user interface with a few menu options and mouse events.

After developing the design during class, we assign students to imple-
ment some or all of it. While this example is not large, some of the ideas
are new and challenging to the students. We believe students can understand
and appreciate the design concepts without doing a complete implementa-
tion. We have had much success assigning partial implementations. Typ-
ically, we provide students with a shell program, including the interfaces
and ask them to implement many of the concrete classes.

5. SUMMARY
The object-oriented design presented in this paper has emphasized re-

sponsibility driven design, polymorphism, and design patterns. We have
found that introducing these concepts while solving specific problems is
very worthwhile. It instills in students the power of the ideas and gives
them a touchstone example for future reference. The Set program provides
a particularly clear example of this instructional approach.

Java source code for the solitaire Set game as presented in this paper may
be downloaded from:

http://www.cs.uwp.edu/staff/hansen

6. REFERENCES
[1] J. Adams and J. Frens. Object centered design for java: Teaching ood

in cs–1. Proceedings of the Thirty–Fourth SIGCSE Technical
Symposium on Computer Science Education, 34:273–277, 2003.

[2] M. Falco. Set: The Family Game of Visual Perception.
http://www.setgame.com, 2002. URL current as of August,
2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object–Oriented Software. Addison–Wesley,
1995.

[4] C. Larman. Applying UML and Patterns: An Introduction to
Object–Oriented Analysis and design and the Unified Process.
Prentice–Hall, 2 edition, 2002.

[5] D. Nguyen and S. Wong. Design patterns for decoupling data
structures and algorithms. Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education, 30:87–91,
1999.

[6] D. Nguyen and S. Wong. Design patterns for lazy evaluation.
Proceedings of the Thirty–First SIGCSE Technical Symposium on
Computer Science Education, pages 21–25, 2000.

[7] D. Nguyen and S. Wong. Design patterns for sorting. Proceedings of
the Thirty–Second SIGCSE Technical Symposium on Computer
Science Education, pages 263–267, 2001.

[8] D. Nguyen and S. Wong. Design patterns for games. Proceedings of
the Thirty–Third SIGCSE Technical Symposium on Computer
Science Education, pages 126–132, 2002.

[9] M. R. Wick. Kaleidoscope: Using design patterns in cs1.
Proceedings of the Thirty–Second SIGCSE Technical Symposium on
Computer Science Education, pages 258–262, 2001.

[10] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing
Object–Oriented Software. Prentice–Hall, 1990.

