
Events Not Equal To GUIs∗

Stuart Hansen
Department of Computer Science
University of Wisconsin - Parkside

Kenosha, Wisconsin

hansen@cs.uwp.edu

Timothy Fossum
Department of Computer Science
University of Wisconsin - Parkside

Kenosha, Wisconsin

fossum@cs.uwp.edu

ABSTRACT
The event driven paradigm is ubiquitous in modern software. Many
texts introduce events when discussing graphical user interfaces,
but the event paradigm extends well beyond that domain. Events
also play important roles in operating systems, component based
systems, reactive systems, middleware, web services and other
fields. Computer science educators have an obligation to see that
our students thoroughly understand the event paradigm and have
some grounding in tools to develop event driven systems. This pa-
per describes an upper division, computer science elective course
in event driven programming. The course gives a comprehensive
treatment of event driven systems. It appropriately captures the im-
portance of the event paradigm and serves to integrate concepts
from several different computing fields, including Programming
Languages, Operating Systems, and Software Engineering. It also
introduces students to advanced tools and packages designed for
developing event driven systems. The course has been taught four
times at our institution, having repeatedly received high marks from
the students for both its conceptual and technical content.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming;
D.1.5 [Programming Techniques]: Object-Oriented Program-
ming; D.1.m [Programming Techniques]: Miscellaneous

General Terms
Design, Languages

Keywords
Events, Event Driven Programming

1. INTRODUCTION
Event driven programming is an important conceptual and prac-

tical programming paradigm. It is used in and influences many

∗Supported in part by NSF grant DUE #0089406

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

different fields of computing. Often textbooks contain sections or
chapters on events as they relate to the text’s topic [2, 6, 7, 10, 23].
The 2001 computer science curriculum guidelines include event
driven programming as a topic within programming fundamentals
[8]. Numerous computer science educators have promoted the use
of event programming in the undergraduate curriculum [4, 20, 21,
22]. The emphasis by these authors tends to be to introduce events
and GUIs early in the CS curriculum.

Event driven programming is important enough to warrant its
own course, in addition to treatments elsewhere in the curriculum.
We have introduced a senior level elective on event driven program-
ming. The course treats event driven programming as a compre-
hensive paradigm that touches on many different application areas.
While GUI development serves as an important source of exam-
ples, it is only one of several types of systems discussed in our
course. Instead, the course looks at the common fundamental ideas
behind a variety of event driven systems and the tools to develop
them. We present these ideas as a unifying framework on which to
ground our studies.

We believe that a comprehensive and unifying treatment of event
driven systems appropriately captures the importance of the event
paradigm and serves as an opportunity to put these concepts on a
theoretical footing, much as a course on programming languages
does after a student has had exposure to introductory programming
in specific languages. The ubiquitous presence of events in modern
computing systems makes it easy to justify their treatment in the
CS curriculum. Modern object–oriented languages like Java and
C# include complex class hierarchies to handle events. Integrated
development environments (IDEs) for these languages often have
special built–in functionality to facilitate event programming. At a
much lower level, interrupt processing also fits into our paradigm.
For example, a physical mouse click is captured and processed by
the operating system via interrupts. In fact, the passing of a mouse
click through the various layers, from hardware to operating sys-
tem, to windowing system, to application, makes an excellent class-
room example.

2. THE EVENT PARADIGM
Early in our course we present a comprehensive conceptual

model of event driven programming. Many different programming
languages support the development of event driven systems [1, 3, 5,
9, 11, 14, 15, 17, 18, 19]. The programming model put forward by
each of these varies and can be a matter of considerable debate [15,
18], which makes defining a comprehensive model more difficult.
Our approach is to distill the features that are common to many of
these systems.

2.1 Characteristics of Event Driven Programs
We have identified several features that underlie event driven

programming systems. Principal among them are loose coupling,
state based control and concurrent processing.

2.1.1 Loose Coupling
In object–oriented systems, events have a source object and a

handler object. Events originate in the source and are processed
by the handler. Event Sources may be any object, including GUI
(or non-GUI) components, hardware devices or remote processes.
In each case the event source fires an event to the handler, which
responds by taking some action. The same source/handler relation-
ship exists in non–object–oriented systems. Rather than having a
handler object, however, the handler is typically a callback func-
tion.

The relationship between sources and handlers generally has the
following characteristics:

[1] Runtime Registration
The binding of event sources and handlers is delayed un-
til runtime. In procedural languages, callback functions are
registered with an event source using function pointers. In
object–oriented languages like Java, the event handler ob-
jects are registered with the event sources by passing a refer-
ence to the handler to a registration method in the source.

While event registration (and deregistration) is a runtime ac-
tivitiy, good event driven designs consistently register han-
dlers as one of the first steps of program execution and never
deregister them. Early registration is so fundamental that
some event driven systems, like Java Beans, give registration
time a special name, “Design Time” [9]. If the system de-
signer needs to change the response to an event, the designer
can use the state design pattern (discussed below) to alter the
behavior of the handler rather than registering an alternative
handler.

[2] Multicasting
Multicasting means that a single event may be sent to multi-
ple event handlers. A typical example would be when an ob-
ject has multiple views associated with it. Each view needs
to be updated when a property is changed, so each is sent the
event.

[3] Multiplexing
Multiplexing occurs when a handler receives events from
multiple sources. GUIs use multiplexing when there are mul-
tiple ways to accomplish the same action, e.g. choosing File
– Save or clicking on a Save icon.

[4] Inverted Semantics
In procedure–oriented design, programs are often imple-
mented in units that have a client/server relationship. Client
procedures achieve their higher–level goals in part by call-
ing a collection of procedures that provide lower–level ser-
vices. In such cases, the client blocks until the server com-
pletes. Frequently the server procedures return values to
the clients either through return values or indirectly through
side–effects. The client can be viewed as having a “higher
purpose” than the server procedures it may call.

In many event driven programs, a low–level event source
triggers a higher–level action in a handler, e.g. a mouse click
may trigger a handler to delete a file. The event source never
receives a return value and (because of late binding) will not
know what actions are triggered by the registered handlers.

Often the event source does not block to wait for handlers to
complete their tasks.

2.1.2 State Based Control
An event driven system consists of a collection of objects that

change as events propagate among them. In simple systems the ob-
jects’ data may be the only thing that changes. For example, an
event results in a name being added to a class roster, or the price
of popcorn being increased by a quarter. In more complex systems,
the control state of the system also changes. The control state deter-
mines what events the system responds to, and how it will respond
to each of them. At any time, the system is in a specific control
state. For example, a stopwatch is in one of two states: stopped
or running. Only if the state is running does the time get updated;
when stopped, the watch ignores the advance of time. The control
state of the watch determines how it responds to timer events. Many
real world embedded systems use state based control, but very few
of our students have been exposed to the design of a state based
system before taking our course. We spend a significant amount
of time discussing state based control, the state design pattern [13],
and UML models for representing control state [12, 16].

2.1.3 Concurrent and Distributed Computing
Multithreading and concurrency are intimately related to event

driven programming. These topics are generally introduced to un-
dergraduate students in an operating systems course. Frequently
students study the standard synchronization problems, but are not
asked to do significant concurrent programming. Our event driven
programming course gives them a chance to integrate their under-
standing from operating systems while solving practical program-
ming problems. The classic synchronization issues of race con-
ditions and deadlock are faced by students even when developing
fairly simple event driven systems.

In distributed event driven systems the event sources and han-
dlers are spread across multiple computers. An event handler re-
ceives a message from a possibly distant source telling it that an
event has occurred. The event handler processes the event in the
same way it would process local events. The current generation
of college students has grown up with the Internet. They are very
familiar with chat servers and multi–user distributed games. Our
course gives them a first look at the technical issues related to de-
signing and developing distributed systems.

3. COURSE OUTLINE
This section presents a brief overview of our course. We faced

a basic problem of choosing what development tools and systems
to use. Many different languages and tools support event driven
programming. We felt that the best approach was to give a more
in–depth treatment of a few of them rather than to give a cursory
treatment of many. Our two primary goals in choosing tools were
that the tools be relatively popular and that together they give the
students a good breadth of experience.

3.1 GUIs
We begin the semester by teaching Java GUI development us-

ing Swing. In CS1 and CS2, we introduce students to Java GUIs,
but only briefly. Our treatment of GUIs in the event driven pro-
gramming course is more extensive. Students explore many of the
standard Swing components. They gain technical knowledge in
Swing programming and an appreciation for the complexity of hu-
man computer interfaces.

During this unit students also learn the Java event model. We
introduce the concepts of event sources, handlers, listeners and
adapters and explain the model–view–controller paradigm.

Toward the end of our GUI unit students study the Java imple-
mentation of events and components. We assign them a project
where they define their own event types, develop a source compo-
nent for those events, define a listener interface for the event class
and supply a handler that implements the interface. This challeng-
ing project integrates many concepts. Students gain a deeper un-
derstanding and appreciation of the roles the various classes and
interfaces play.

3.2 Concurrent Event Programming
We introduce concurrent programming to our students when dis-

cussing the event monitoring thread. This thread bears the respon-
sibility for monitoring all event occurrences. It detects the events
and hands them off to the appropriate handlers. This thread needs
to remain responsive. It should detect events very shortly after they
occur. If an event handler’s processing will take much time, it must
execute in a new thread, leaving the monitoring thread to wait for
more events. Thus, the event monitoring thread may detect multiple
events and may start multiple handler threads in quick succession.
Since individual handlers may have multiple threads executing con-
currently within them, this provides an opportunity for us to discuss
synchronization issues.

3.3 Distributed Event Programming
The loose coupling between event sources and handlers makes

event driven programming a natural domain for distributed process-
ing, since the event source and event handler may be on separate
computing systems. There are many libraries and run-time systems
for building and deploying event driven distributed applications.
We chose CORBA and web services as example distributed archi-
tectures that support such activities.

CORBA, the Common Object Request Broker Architecture, is a
middleware system designed to help integrate legacy systems into a
distributed environment. There are CORBA implementations avail-
able for a wide variety of hardware platforms, operating systems
and languages. This has made CORBA a popular system for build-
ing distributed applications.

CORBA places an object request broker (ORB) behind each
component of the system. At run-time, the ORBs communicate
with each other using protocols that are machine- and language-
independent. A programmer lets CORBA auto–generate most of
the code needed for the application objects to work with their
ORBs. The distributed nature of the system is almost transparent
to the application programmer. The event source calls an auto–
generated local proxy event handler. The proxy works with the
ORB to deliver the event to the actual handler on the remote sys-
tem.

One of our more successful assignments required students to de-
velop a chat system, including both a server and a client. Every stu-
dent’s client was able to communicate with every other client using
any of the server implementations. A student’s code typically in-
volved 20 classes of their own, plus approximately 15 classes auto–
generated by CORBA. Hundreds of classes and objects worked
together seamlessly in the resulting distributed system. This is a
testament to the quality of Java’s CORBA implementation and how
easy it is for students to learn distributed processing using CORBA.

We also introduce students to web services. Many CS depart-
ments are looking for ways to integrate web services into their cur-
ricula. We found it to be a natural match with our event driven
programming course. A web service runs behind a web server and

uses XML (eXtensible Markup Language) to communicate with its
clients. Requests for the program’s services arrive at the server in
the form of XML. The service parses the XML, executes the re-
quest and returns the result, again in XML. Clients may be web
browsers, standalone applications, or other web services. The web
server gives a safe environment for service execution, and XML
gives the flexibility to deal with diverse clients.

In our early offerings of our course students developed web ser-
vices and clients in Java. Microsoft’s new Visual Studio .NET pro-
vides a powerful, easy to use platform for this type of development.
In our most recent offering, students developed their web services
in .NET.

3.4 Engineering Event Driven Systems
As a final project, students develop a larger event driven pro-

gram of their own choosing. We discuss some of these projects in
the next section. While the students are working on their projects,
class time is dedicated to an exploration of the software engineering
aspects of event driven programming. We emphasize those aspects
of software engineering that are particularly applicable to the event
driven programming paradigm.

There are several UML models that are useful in event driven
systems. Interaction diagrams capture the expected sequence of
events. Activity diagrams illustrate the concurrency and synchro-
nization of a system; and state charts represent the control states of
the system. We also introduce more traditional models of concur-
rency such as Petri Nets.

Testing and debugging event driven systems pose challenges not
present in many other types of development. We emphasize state
based testing in our discussions. Each possible event should be
tested adequately in each of the possible control states. The loose
coupling between sources and handlers makes debugging event
driven systems difficult. An event may not result in an expected
behavior if the event did not fire, if the handler was not registered,
or if there is a bug in the handler.

Discussing software engineering while students are working on
projects has proved particularly effective. Students find the UML
models useful in their project designs. The projects are sophisti-
cated enough that the students appreciate a disciplined approach to
testing and debugging their systems.

3.5 Other Topics
The event driven programming paradigm extends well beyond

the topics outlined above. When time permits we also discuss the
following topics in our course:

3.5.1 Low Level Event Processing
Interrupt handling is event driven. Students gain a deeper under-

standing of both operating systems and the event driven paradigm
when interrupts are presented in this manner.

3.5.2 Simulation
Event driven programming evolved in part from discrete event

simulation. Discrete event simulation is large topic. We have intro-
duced students to it in one or two lectures, but have not developed
a complete unit on it.

3.5.3 Games
Students love games and game programming. Complex tool kits

exist to help programmers develop games, and most of these toolk-
its contain support for events. While some of our students choose
to work on projects that are game-related, sophisticated game pro-
gramming extends well beyond the scope of our course, and we

Figure 1: The GUI for the Quiddler client program. This client
has been used to play Quiddler across widely geographically
dispersed machines.

give it little more than a cursory treatment.

4. STUDENT PROJECTS
One of the real pleasures of teaching event driven programming

has been the eagerness and energy students have demonstrated
when it came time to develop their own projects. The instructors
have guided the projects primarily by helping the students estab-
lish a reasonable scope, but it has been the students who have come
up with a broad array of original project ideas. On multiple oc-
casions students have even chosen to explore and use event driven
technologies that we had not discussed in class. This section briefly
discusses a few of the diverse projects that students have completed.

4.1 GPS Mapping System
One student developed a system to connect his handheld Ge-

ographic Positioning System (GPS) with his laptop. The laptop
maps the route followed as the student drives or walks around. The
implementation uses the Java Communications API which is event
driven. This student spends his summers working on search and
rescue teams in the Rocky Mountains. He hopes to extend the sys-
tem to include topological map images on the background of his
screen.

4.2 Quiddler R©

Another student developed an especially nice distributed Inter-
net implementation of Quiddler1, a card game where players score
points by forming words. The user interface for the Quiddler client
is shown in Figure 1.

4.3 An Event Monitor
A team of two advanced students developed an event monitor-

ing system used as a tool to help programmers see what events are
processed by their programs. The system captures the Java events
that occur within a program and then displays them in meaningful
ways. The system was developed in AspectJ, an aspect–oriented
language that produces code that instruments a running Java pro-
gram without changing the Java program’s semantics. A separate
window displays the events as they occur.
1Quiddler is a Registered Trademark of Set Enterprises Inc.

5. CONCLUSIONS
Our Event Driven Programming Course has been a major suc-

cess. It helps students gain an in depth understanding of the event
paradigm and it exposes students to modern programming tools de-
signed for event driven programming. Our students have found the
course material to be important to them both theoretically and prac-
tically.

6. REFERENCES
[1] E. Angel. Computer Graphics: A top-down approach with

OpenGL. Addison-Wesley, 1997.
[2] M. J. Bach. The Design of the UNIX Operating System.

Prentice-Hall, 1968.
[3] G. Brose, A. Vogel, and K. Duddy. Java Programming with

CORBA. OMG Press, 2001.
[4] H. B. Christensen and M. E. Casperson. Frameworks in cs1 -

a different way of introducing event-driven programming.
SIGCSE Bulletin, 34(3):75–79, September 2002.

[5] F. Culwin. A Java GUI Programmer’s Guide. Prentice-Hall,
1998.

[6] H. M. Deitel and P. J. Deitel. Java: how to Program, 4th
Edition. Prentice-Hall, 2002.

[7] H. M. Deitel, P. J. Deitel, J. Listfield, T. Nieto, C. Yaeger,
and M. Zlatkina. C#: how to Program, 4th Edition.
Prentice-Hall, 2002.

[8] G. Engel and E. Roberts, editors. Computing Curricula 2001
– Computer Science. ACM and IEEE, 2001. Online. Internet.
Available WWW: http://www.acm.org/sigcse.cc2001.

[9] R. Englander. Developing Java Beans. O’Reilly, 1997.
[10] E. C. Epp. Prelude to Patterns in Computer Science using

Java. Franklin, Beedle and Associates, 2001.
[11] A. R. Feuer. MFC Programming. Addison-Wesley, 1997.
[12] M. Fowler. UML Distilled, 2nd ed. Addison-Wesley, 1999.
[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 2000.

[14] M. Henning and S. Vinoski. Advanced CORBA
Programming. Addison-Wesley Longman, 1999.

[15] Java Language Team. About microsoft’s "delegates", 2000.
[16] C. Larman. Applying UML and Patterns: An Introduction to

Object–Oriented Analysis and Design and the Unified
Process. Prentice-Hall, 2 edition, 2002.

[17] S. B. Lippman. C#: A Practical Approach. Addison-Wesley,
2002.

[18] Microsoft Corporation. The truth about delegates, microsoft
white paper, September 1998.

[19] J. Prosise. Programming Microsoft .NET. Microsoft Press,
2002.

[20] J. Raab, R. Rasala, and V. K. Proulx. Pedagogical power
tools for teaching java. SIGCSE Bulletin, 32:156–159, 2000.

[21] R. Rasala, J. Raab, and V. K. Proulx. Java power tools:
Model software for teaching object-oriented design. SIGCSE
Bulletin, 33:297–301, 2001.

[22] L. A. Stein. What we’ve swept under the rug: Radically
rethinking cs1. Computer Science Education, 8:118–129,
1998.

[23] A. Tucker and R. Noonan. Programming Languages:
Principles and Paradigms. McGraw-Hill, 2002.

