

CSCI 340

Data Structures and Algorithms

Spring 2011

Programming Project 1 – 2D Trees

Points: 40

Due date: Tuesday, February 1, at the beginning of class.

Background

Consider the problem of storing (x, y) points in a binary search tree. Binary search trees expect

the values stored in them to have an ordering. That is, we go left or right during our searches

based on some sort of less than/greater than relationship. (x, y) points have two orderings, one

based on x and the other based on y. Our goal is to implement a data structure, Two-dimensional

(2D) Trees, that let us use both orderings.

Two-dimensional trees are a data structure very similar to binary search trees. They divide up

geometric space in a manner convenient for use in range searching and other problems.

The idea is to build a binary tree using both the x and y coordinates of the points as keys. The

levels of the tree can split either on the x or the y coordinate; typically, the splits alternate

between the two dimensions.

At every node in the two-dimensional tree that splits on x, the following invariant holds:

• all the points that have an x coordinate value less than or equal to the nodes x value are found

in the left child;

• all the points with a greater x value are in the right child.

Nodes that split on y are similar: less than or equal to y values go on the left, larger on the right.

Searching in the tree

Like binary search trees, a 2D tree can be used to find elements it contains, by walking

recursively from the root of the tree downward, making left/right choices at each node depending

on the value of the point being searched for relative to the split value and axis of the current

node.

In a 2D tree, it is also possible to search for all elements found within some spatial extent, such

as a rectangle in the 2D space. To implement this kind of search, the rectangle is compared

against the split value at each point. If the rectangle overlaps the split value, the algorithm must

search both children of the current node.

Creating a tree

To create the tree each point is inserted into the tree. The algorithm walks down the tree to find

the location that would contain the point if it were in the tree. When this leaf is reached, a new

node (containing the point) is created and inserted there. For example, suppose we want to insert

the following points into a 2D-tree:

A(10, 10), B(100,5), C(100,20), E(50, 3), D(110,7)

The result of this sequence is shown below.

Your Assignment

You are to develop a class named TwoDTree with the following constructors and methods:

1. A default constructor that creates an empty TwoDTree.

2. A constructor that takes an ArrayList<Point> and creates a tree with all the points

inserted into it. Note you should use java.awt.Point

3. public void insert (Point p) - inserts p into the TwoDTree

4. public boolean search (Point p) – returns true if the Point2D is in the tree,

false, otherwise.

5. public ArrayList<Point> searchRange (Point p1, Point p2) – returns an

ArrayList of all points lying in the rectangle bounded by p1 and p2.

You will want to create a private inner interface TwoDTreeNode and two private inner classes,

TwoDTreeNodeX and TwoDTreeNodeY, which make decisions based on x or y, as appropriate.

This assignment isn’t too long or too hard. The real tough part is wrapping your brain around the

ideas and translating them into code. This means there can be some subtle bugs. Start early, so

you have time to find and fix the bugs.

Create your own tests to make certain your code runs correctly. Your instructor will design his

own tests for grading.

What to Submit

Submit your TwoDTree.java file and any additional files related to this project. Only

electronic submission is necessary.

Good software engineering is expected. Use lots of comments, appropriate indentation, etc. when

writing your program.

