Chapter 1

Event Based Systems

1.1 Events

An event is an observable occurrence. An “occurrence” is something that happens at some point in
time. An occurrence is “observable” if it is possible for an observer to notice that it happened. (If
a tree falls in the forest and nobody is there to hear it, the event still occurs since it is possible for
an observer to have heard it.)

As you can imagine, events are happening continually. Here are some examples of events:

e a raindrop falls into a river
e a river overflows a dike

e a star goes supernova

an insect flies nearby

a driver presses the brake pedal of a car
e a person sends a FAX to a remote FAX machine

e a FAX machine receives a fax transmission

1.1.1 Responding to events

If an observer takes an interest in an event, the observer may respond to the event in some way. If
you are a farmer, you are not likely to take an interest in a particular raindrop falling into the river
next to your field, but you may well take an interest in the river overflowing a dike and flooding
your field. If you are an astronomer, you may take an interest in a supernova event if you are the
first to discover it, and if so you may respond by announcing your discovery in a science blog. As
a human, you may not take an interest in an insect flying nearby, but a frog may well take a keen
interest in such an event.

Using the jargon of programming, when an observer responds to an event, we say that the
observer handles the event and that the observer is the event handler. We will use this terminology
throughout the remainder of the book — though responds and observer are entirely appropriate terms
to describe the same ideas in non-programming situations.



1.1.2 Event sources

Some events occur because some agent was responsible for causing them to occur. In the above
examples, the driver pressed the brake pedal and the person sent the FAX; each caused the particular
event to occur. Again using the jargon of programming, we say that the agent causing the event is
the event source and that the agent fires the event. This terminology is also used in neurobiology
where one would say that a neuron fires; of course, this too is an event.

When an event occurs but we are not particularly interested in the source of the event, we may
say informally that the event fires — though events themselves are not agents capable of action.

1.2 Event based systems

We define a system to be a collection of agents subject to a set of defined behaviors and interactions.
In a system, an agent’s behavior at any point in time is dependent on the agent’s state. Agents in
a system can interact among themselves in several ways. We describe three event based interaction
types here:

1.2.1 Request-response

A request-response interaction (also called request-reply) is between two agents. Agent A makes a

request to agent B by sending agent B a request indicating the type of request along with the details

of the request. Agent B processes the request and responds by sending a reply back to agent A.
Here are two examples of request-response interactions:

e Mark drops his car off at his favorite repair shop, “B-2 Automotive Repair”, and requests that
they fix his car’s broken water pump. When the repair shop has completed the job, Mark
drives his repaired car home.

e A web browser requests to load this book’s homepage. The web browser waits for the server
to respond with a copy of the page. T he browser proceeds to display the page on the screen.

When the requesting agent waits and does nothing until the response arrives, the interaction
is called blocking or synchronous. The second example above is blocking, since the web browser
waits for the server to respond. The first example above may or may not be blocking, depending
on whether Mark waited at the repair shop (sleeping on the waiting room couch, perhaps) for the
repair job to be finished, or he went home (because the repair shop needed to order a new pump)
and did other things until the repair shop called to say that the car was fixed. If an interaction is
not blocking, we say it is nonblocking or asynchronous.

1.2.2 Message passing

A message passing interaction is also between two agents. Agent A sends a message to agent B
containing the type of the message along with any message details. Message passing differs from
request-response in that once agent B receives the message, the agent is not required to respond to
agent A.

Here are two examples of message passing interactions:

e “XYZ Brokers” sends a spam email to Beverly about a hot stock prospect that (they say) will
double in price in the next two days.

e Mark receives a voice message from his dentist’s office that Mark missed his teeth cleaning
appointment.



1.2.3 Publish-subscribe

A publish-subscribe interaction involves multiple agents. A gents B, Bs,---, B,, subscribe to a
message service indicating that they want to receive certain types of messages. Agents Ay, As, -+, A,
publish various types of messages to the service. If agent A; publishes a message type that agent
Bj is interested in, agent B; will receive a copy of the message.

Here are some examples of publish-subscribe interactions:

e Ahmed and Beverly subscribe to the “Weaving Monthly” magazine and receive copies of the
magazine through the postal service as they are published.

e Mark checks a “supernova watchers” wiki on a regular basis. Sonia and Ahmed frequently
post to the wiki, and Mark reads their posts.

e Pat subscribes to an Internet service that publishes real-time stock transactions, but Pat only
receives transaction information from the two stocks with ticker symbols VGZ and BAA that
she has subscribed to.

e An object in a Java program requests to receive all mouse click events that occur on a particular
button.

Publish-subscribe is similar to message passing in that the publish-subscribe message recipient
is not expected to reply to the message. It is different from message passing in an important way:
in message passing, the message sender determines who the message recipient is, and the message
recipient has no say about what messages it will receive. In publish-subscribe, the message recipient
determines what message service it will subscribe to and what messages it is willing to receive. From
the point of view of message recipients, the disadvantage of message-passing is that the recipients
can receive unwanted messages (such as “spam”); the disadvantage of publish-subscribe is that a
recipient may miss messages of interest because it hasn’t subscribed to them.

If there is only one publishing agent A; in the publish-subscribe scenario, that agent may also
serve as the message service, in which case that agent is also the source of all subscribed messages.

1.2.4 Events in Systems

Each of the three types of agent interactions described above involve events.

In request-response, there are potentially four events: (1) the act of sending the request by agent
A; (2) the receipt of the request by agent B; (3) the act of sending the reply by agent B; and (4)
the receipt of the reply by agent A. For synchronous request-response interactions, especially those
that occur over short periods of time, these four events are normally all combined together and
considered one event.

In message passing, there are only events (1) and (2) as described above; again, these two events
are normally considered one event if they occur over a short period of time.

In publish-subscribe, we will consider the posting of a message by one of the publishers as an
event, and the receipt of a posted message by one of the subscribers as an event. Again, if posting
and receiving of the message occur over a short period of time, we may consider them as one event.

1.2.5 System state

A system’s state is a complete description of the system at some point in time. As the agents in the
system carry out their defined activities and interact with other agents through events, the state of
the system changes.



For example, consider our solar system — our sun, planets, moons, etc. The state of this system
at any point in time is the exact position of each of these entities and their velocities with respect
to each other. As time passes, these entities will change position in a mostly predictable way. (We
say “mostly” because external events such as the nearby passing of an extrasolar mass could affect
planetary motion.) The solar system has been studied intensely for hundreds of years, and its
predictable behavior has allowed astronomers to identify when events such as eclipses will occur.

As another example, consider a running Java program, which we will call a process. The state
of the process is the collection of values of all the memory cells that the process depends on or has
access to, including program variables, processor registers, RAM, and disk. We assume that all such
values can be represented as a finite sequence of binary bits (zeros and ones). As time passes, these
values will change in a mostly predictable way. (We say “mostly” because external events such as
user mouse clicks can affect program execution.) Millions of computer programs have been written
to carry out useful activities, and their predictable behavior has allowed us to trust these programs
to work as they have been designed.

1.2.6 Event based systems defined

An event based system is a system in which interactions among the agents in the system are governed
by events, principally those interactions that are request-response, message-passing, or publish-
subscribe.

1.2.7 Discrete systems and events

A system is said to be discrete if every possible state of the system can be described using a finite
amount of memory (a finite number of bits) and if, over any finite time interval, the state of the
system changes a finite number of times. This means that for every state of a discrete system, there
is always a next state.

e A traffic light is a simple example of a discrete system. There are a limited number of states:
green, yellow and red. Over a finite time interval, the light changes a finite number of times.

e By contrast, the solar system is regarded as a continuous system. Each planet moves around
the sun in a continuous motion, not moving from state to state.

Computer programs can model either discrete or continuous systems, e.g. we can write a program
to model a traffic light or the solar system. Computers operate discretely, however. A computer has
a finite amount of memory and executes programs one instruction at a time, moving from state to
state.

Since firing an event in a discrete system can result in only a finite number of states, we normally
consider events in such a system as discrete as well. A discrete event system, then, is a discrete
system that is event based.

If a discrete system is closed — that is, if there are no possible interactions with anything outside
of the system — the state of the system at any one point in time is sufficient to determine all future
states. Such a system is also called deterministic. However, virtually all interesting discrete event
systems are not closed. These include any systems that involve human interaction or information
from real-time data acquisition sources.

Our examples in most of the remainder of this book will be discrete event systems, although
some theoretical discussions will apply to arbitrary event based systems.

4



1.2.8 Examples of events

We give several examples of events, highlighting the events of interest in boldface. (These examples
include more events than we choose to focus on.)

Put on the brakes

The driver of an automobile in heavy traffic puts on the brakes, and the automobile’s
brake lights illuminate. This event is observed by motorists traveling close behind.
Observing motorists may handle the event by putting on their own brakes, depending
on how close they are to the braking automobile in front. These events can propagate
backwards down the highway, in a series of cascading events.

Spring equinox

An equinox occurs in the northern and southern latitudes when the number of hours of
daylight and darkness are the same. The spring (or vernal) equinox is preceded by shorter
days and longer nights. Ancient agricultural societies may have observed this event using
solar “calculators” (e.g., Stonehenge) and used it to plan their growing season.

Fire!

A person yells “fire!” in a crowded theater. The occupants of the theater react by
rushing to the exits.

Stock prices

An on-line investment service updates and displays the prices for securities traded
in the open market. An investor watches these updates and waits for the price of a
particular security to exceed a threshold (a specified amount per share). When the
investment service lists the security with price exceeding this threshold, the investor
trades shares in the security.

Alarm clock
A person going to sleep in the evening sets an alarm clock for some time the next
morning. The alarm goes off, and the person awakes.

Election

The United States holds an election every four years for President. Voters go to the
polls on election day in November to elect a President. The elected President takes
office in January.

Digital watches

Many modern electronic devices are event based, including digital watches. Such a
watch may have several separate buttons on it. Pressing a button sends an event to
the watch, for example, to start or stop the watch’s timer.



Traffic lights

Traffic lights change from red to green based on timers and sensors. When the light
changes to green, the vehicles start moving.

GUIs

GUlIs are almost always event based. They are controlled by moving and clicking the
mouse, and by pressing keys. The program responds by executing the appropriate
method for each event.

Interrupts

Computer peripherals interface with the operating system via interrupts. A peripheral
device raises an interrupt that sends message to the processor telling it that the device
needs attention. The operating system responds by executing the interrupt handler.

DB triggers

Database management systems (DBMSs) implement triggers to help maintain the in-
tegrity of databases. A trigger is procedural code that is run automatically in response
to an event, which may be as simple as inserting or modifying data in a table. For exam-
ple, inserting a new row into a table may cause the table to grow past a predefined
threshold, which then requires the DBMS to rearrange the data to a more efficient form.
The database management system responds to the event by taking action to correct the
problem.

Middleware services

Middleware is computer software that facilitates the development and deployment of
distributed programs across heterogeneous computing systems. Middleware provides
services that allow messages to be easily passed between the systems regardless of the
hardware or operating system of each. The systems are unaware of each other except for
the messages that they send and receive.

Discrete event simulation

Discrete event simulation is the probably the oldest field of computing that explicitly
recognized the central role of events. In discrete event simulations a model of a real
world system is simulated over time using a computer. For example, the model might
be of a grid of streets with traffic lights and stop signs at various intersections. The
simulation allows city planners to test various timings for the traffic lights, or simulate
the effect of adding a new light at a particular intersection. The goal is to maximize
traffic flow and safety within the system. In discrete event simulation, an event takes
place at simulated time ¢, causing other events to be scheduled at a future time ¢+ dt.

1.3 Attributes of Event Based Systems

Most of this text concentrates on developing event based systems. However, these systems differ from
other computer systems in more ways than just their programming. Understanding these differences
gives us a better appreciation of what event based systems are about.

6



1.3.1 State Based

Event based systems are state based. The system stays in a stable state until an event occurs.
Processing the event changes the state, then the system quiets down and waits for more events. For
example, a text editor sits there, not changing the document, until the user presses a key. Then it
records the key pressed into the document and waits for the next event. Similarly, an engaged cruise
control system in your car keeps the car running at a near constant speed until the driver steps on
the brake, or dis-engages the system via controls on the dashboard or steering column.

Conceptually, we divide state into two types, data state and control state. The data state of a
system is the collection of variables that the system maintains. For example, in our text editor, the
data state contains the document being worked on and possibly some ancillary variables like the
document’s file name. The document is updated as the user types. The file name is updated only
when the user chooses Save As.

The control state is the collection of variables that determine how the system responds to in-
coming events. For example, vi (one of our all time favorite text editors) has insert mode and
command mode. In insert mode, if the user types <shift>77, vi inserts two capital Zs at the
cursor’s current location. In command mode, <shift>Z7 directs vi to save the document and
exit. The events, the <shift>ZZ, are the same in both cases, but the system responds to them very
differently.

Embedded systems use computers to control another device. For example, a cruise control
system on a car is an embedded system. The computer receives input signals from sensors and
outputs control signals to the device. The control state of the embedded system determines the
output values. For example, when the cruise control system is engaged the car’s electronics send
signals to the throttle maintaining the desired speed.

Ideally, control state and data state are disjoint. That is, the editor’s mode and the document
are not related. The mode has to do with how the text editor behaves. The document is whatever
the user is typing. In practice there may be some murky overlap. For example, some text editors
will not save an empty document. They treat an empty document differently than one that contains
even one character. That first character is part of both the data state and the control state.

1.3.2 Nondeterminism

Nondeterminism means that it is impossible to determine exactly how a computation will proceed.
Even given the same inputs the path the computation follows may vary from run to run. All event
based systems contain varying degrees of nondeterminism.

Consider any modern desktop operating system. Hundreds or thousands of events occur every
second. The mouse moves. Keys are pressed. Network packets arrive. A disk drive signals that
data is ready. The user plugs in a USB device. All are events. The entire operating system needs
to continue to work solidly, responding to each event, regardless of the order they occur.

The distributed nature of many modern event based applications complicates the matter further.
These systems contain a high degree of nondeterminism. Consider a web based flight reservation
system. Users from around the world make travel reservations. If multiple users compete simulta-
neously for the same two seats on a flight, one of them should get both seats. Which user gets the
seats is determined by the order in which their events are handled, but this order depends on many
unknowns, such as the network load between each user and the system. The system mustn’t hang
because of the competition. Nor should it give one seat to one user and the other seat to another
user.



1.3.3 Loose Coupling

One of the strengths of event based programming is that it allows complex systems to be built from
diverse, loosely coupled components. The components communicate with each other via events.

Again, consider a desktop operating system. New peripheral devices (printers, network cards,
etc.) require device drivers be installed to interface the device with the operating system. Many
device drivers are loosely coupled to the kernel of the operating system, as they are developed
separately and registered with the operating system while it is running.

Similarly, consider GUIs. The components that go into a GUI are supplied by the language or
library being used. When a GUI program starts, there is typically a ”building” phase, where the
components are placed in the window and the code behind each is registered with the component.
This is also a loosely coupled model, as the components were developed independently, code was
registered at runtime, and the components execute the code by firing events.

As a final real life example, consider a jet fighter aircraft. The plane is almost certainly event
based. The cockpit is full of all sorts of buttons and switches, each of which generates events. The
plane’s electronics is made up of multiple subsystems. There is the system controlling the engines,
the navigation system, the communications system, the radar system, and the weapons system, to
name just a few. These subsystems work together and communicate with each other to keep the
aircraft functioning correctly, but each exists independently of the others and can be repaired or
upgraded, as needed.

1.3.4 Decentralized Control

In days of yore, when the authors were just wee lads, there was a main program. The main program
called a subroutine that called another subroutine that called still another subroutine. Each subrou-
tine returned when finished, and the main program proceeded to call its next subroutine. The world
had order. The main program was in charge and everybody lived happily ever after, until now - - -

Event based systems use decentralized control. The system starts up and waits for events to
occur. Each event causes changes to the system. Even a single event can have cascading effects that
propagate throughout the system. Nobody is in charge. In many languages the main program is still
responsible for starting the system running, but after that, the flow of control depends on events.

Object-oriented programming (O-OP) provides a good fit for designing control of event based
systems. O—OP places emphasis on developing highly cohesive objects and methods. Each object
represents one thing. Each method does one task and does it well. Event handling code is also very
cohesive. The event handling code associated with a GUI component is seldom very long, as each
component plays a small role in the overall processing.

1.4 The Event Based Programming Paradigm

What makes event based programming different from other types of programming? Event based
programming is paradigm. It is a way of thinking about problems and their solutions. It provides
abstractions . Languages are known as procedural or object—oriented because they map the abstrac-
tions onto language structures. Event based programming is no exception. The event model is its
primary abstraction.

1.4.1 The Event Model

At the heart of the event based paradigm is the concept of an event. Three types of computational
objects are associated with each event, the event source, the event object, and one or more event
handlers sometimes also referred to as event listeners.



e Fvent Sources

The event source is the originator of the event. We say that the event source fires an event,
when it creates an event object and prepares it for the handlers. In our earlier computing
examples we tended to emphasize event sources that were hardware: the mouse, the keyboard,
or a disk drive. Event sources can be any object, hardware, software or firmware, however.
For example, it is not unusual to have a data object in a system, say a list of names, that fires
an event when the list changes. There may be multiple other objects that update their state
when the event is detected.

e Fuvent Objects
An event object encapsulates the critical data associated with the event. For example, there
are few events as ubiquitous as mouse clicks. The data associated with each click includes:
the screen or window coordinates of the click, and the button that was pressed. Any handler
listening for the click may need some or all of this information, so any reasonable implemen-
tation of the mouse clicked event object, regardless of the language or system, will include
it.

e Fvent Handlers
Event handlers respond to events by carrying out the actions specified by the programmer.
The handlers are the glue that binds together the other objects to form a working program.
Handlers are registered with their event sources. After that, they wait passively for the source
to fire an event to them, at which time they run their handling code. Event handlers can
contain arbitrary code, but a typical event handler updates the data state and the control
state of the system, and possibly notifies other objects of the changes.

1.4.2 Events versus Method Invocations

When we discussed loose coupling in the previous section, we were primarily referring to the rela-
tionship between the event sources and their event handlers. The relationship is based on events,
not method invocations. The ideas behind the two are similar, but there are several important
differences. The event source and event handler are much more loosely coupled than objects in a
standard caller/callee relationship.

e Event handlers are registered (and possibly de-registered) with event sources at runtime. This
late binding means that it is possible to plug—in different handlers with the same event source
at different times during execution. This is a type of runtime polymorphism found in many
modern languages, but is quite different from the compile and link time semantics of traditional
method calls.

e There may be zero, one or multiple handlers registered for an event. Sending an event to
multiple handlers, also known as multicasting, proves useful when there are multiple views
that rely on the same data. For example, consider the case of a hospital information system.
A doctor, a nurse, and a pharmacist each have views of a patient’s records. If the doctor
updates the patient’s chart, it is important that the nurse’s view and the pharmacist’s view
both be updated appropriately. Having the patient (or chart) object multi cast the event is
an appropriate solution to this problem.

e Event handlers do not return any information to the event source. That is, by the nature of
the paradigm, event handlers have a void return type.

e Multiple event sources may fire events to the same handler. This type of multiplering is
frequently seen in GUIs when there are multiple ways to accomplish the same task. For

9



example, a program might have a menu item File -- Save and might also have a Save icon.
The same handler is registered with both. This simplifies maintenance and debugging, as there
is only one place the code needs to be updated.

e In most event based languages, the event source does not block, waiting for the handlers to
complete. It fires the event, then continues to run. In the terminology introduced earlier in
the chapter, we say the event source and event handler execute asynchronously.

e There may be a delay between when the event fires and when each handler processes it. This
delay may be caused by a backlog of other events that are awaiting processing, other handlers
executing for the current event, a network delay if the handler is on a remote system, or
numerous other reasons. The key point is that the delay can occur.

As with any paradigm, languages and libraries that implement support for event based systems
vary. Each of the properties listed above may or may not be true. For example, in Java, some
events are handled asynchronously, while others are handled synchronously. It is important that
you understand the tools you are using to develop event based systems, as even a small change in
the semantics can have major implications for the program’s correctness.

1.4.3 Writing Event Based Programs

Event based programs are generally a blend of more traditional code, either procedural or object—
oriented, and event code. The event based portion of the code is typically for a subsystem, like GUI
I/0, or database access. Methods and data structures in the traditional code will be accessed from
the handlers, so well designed, cohesive code throughout is critical.

Event based programming languages have hundreds of supporting classes and interfaces in their
libraries. Each has a particular purpose, but gaining a working knowledge of the libraries can be a
daunting task. Becoming a good Java or C# event based programmer takes time and patience.

Modern IDEs, like MSDev .Net, NetBeans, Eclipse and JBuilder, come with visual programming
tools. These IDEs make naive programming of GUIs simple. The user drags and drops components
into a window. Event handler stubs are automatically generated by the system. All the programmer
has to do is fill their method bodies. On the other hand, as we shall soon see, there is much more
to event based programming than putting a bit of code behind a button.

1.5 Goals of the Text

The remainder of the text has three goals:

e We will begin our study by taking a look at event based programming in Java. While there are
many languages that support event based programming, we couldn’t hope to present them all,
and Java’s event model is fairly clean and easy to work with. We will study the event related
classes and learn how to write event handlers that work with them. We will also look at how
to specialize Java library classes to meet our own needs.

e Java is certainly not the only system that supports event based programming and we explore a
variety of other languages and application areas that embrace events. These include: hardware
and operating systems, web services, and distributed systems. You will not become an expert
in any of these fields by reading this text, but you will gain an understanding of the unifying
concepts that arise from the event based paradigm.

10



e Throughout our discussions we will occasionally step back and ask what tools are available
to help us design our systems. We will look at UML models and other formalisms that help
us document our design. We will also look at the design patterns that apply to event based
programming. Finally, we will look at distributed systems modeling tools that help us address
the synchronization problems that arise.

11



