The Fork System Call: C, C++

Creating Processes

When a program has > 1 process running, this is called concurrent programming. To create a new process use the following code:

#include <sys/types.h>

#include <unistd.h>

// defines: pid_t fork();

#include <iostream.h>

void main()

{

if (fork() == 0) cout << "In the CHILD process" << endl;

else cout << "In the PARENT process" << endl;

}

The fork returns twice. It will return a 0 value to the child process and the process ID of the child to the parent process. If the fork call fails, it will return a -1 and set errno.

The OS generates a copy of the parent process to create the child process. The child process inherits open files and environment information.

To return a process's process ID use the getpid() call:

#include <sys/types.h>
// define pid_t

#include <unistd.h>

// defines: pid_t getpid();

…

pid_t pid;

// process's own process id

pid = getpid();

After a fork you may want to have the child process run an executable other than the original executable. You can do this using the 'exec' call. The exec call loads the executable and runs it and does not return unless the call fails.

#include <unistd.h>

// defines: int execlp(

//
const char *file,

/* path and executable name */

//
const char * arg0,

/* executable name */

//
..., const char *argn,
/* variable number of parameters */

//
char* NULL);

/* indicator of last parameter */

...

switch (fork()) {

case 0:

// Child process

execlp("usr/bin/clear","clear",char* NULL);

perror("Got here: clear failed");

break;

default:
// Parent process

return 0;

Terminating a Process

A process may kill itself using the exit() call, or by returning from main(). Two defined constants are available for the exit() call: EXIT_SUCCESS and EXIT_FAILURE:

#incude <stdlib.h>

// includes void exit(int status);

...

exit(EXIT_SUCCESS);

Parent-Child Synchronization with Wait()

A parent SHOULD synchronize its actions by waiting until a child process has either stopped or terminated its actions. The wait() call allows the parent to block until the child has terminated.

#include <sys/types.h>
// define pid_t

#include <sys/wait.h>

// includes: pid_t wait(int *stat_loc);

...

int status;

// contains reason for child's exit

pid_t chpid;

// the pid of the child which terminated

chpid = wait(&status);
// wait() returns status and chpid

Note that byte 1 of status will contain exit code if child terminated normally and byte 0 contains signal # if child terminated due to uncaught signal.

Sending Signals with Kill()

A parent can kill a child (or a child can kill itself) by using the kill() call:

#include <sys/types.h>

#include <signal.h>

// defines: int kill(pid_t pid, int sig);

...

kill(pid, 9);

// signal of 9 is unconditional kill

Note that the parameter sequence of kill system call is the reverse of the kill command:

kill -9 <pid>

Delaying with Sleep()
The sleep() function suspends the invoking process for the number of seconds requested as a parameter:

#include <unistd.h>
// defines: unsigned sleep(unsigned seconds);

sleep(20);

// sleeps for 20 seconds then resumes at next instruction

If sleep() is interrupted (such as by a signal) the number of remaining seconds to sleep is returned.
Printing
You may send output to the standard output with ‘cout’ or standard error with ‘cerr’:

cout << “Here is some text and a variable = “ << variable << endl;

cerr << “The standard error can be directed somewhere else” << endl;

Here the endl is the endline and will cause the output to flush. Without an endl the next output will continue on the current line.

In Unix, at a command prompt, you can run a file and direct standard output to a file:

$./runprogram > fileout.txt

You can also read in command input from a file:

$./runprogram < filein.txt

Printing Current CPU
To print the cpu processor the process is on use:

#include <utmpx.h> // at top of file
cerr << sched_getcpu() << endl;

Getting the Wall Time

To determine how long code takes too run wall-clock time (not internal time) use:

#include <ctime>

int start_s = clock();

… code being timed …

int stop_s=clock();

cerr << "time: " << (stop_s-start_s)/double(CLOCKS_PER_SEC)*1000 << endl;

