PAGE
3
Processor

Cs 355 Computer Architecture

Processor: Datapath & Control

Text: Computer Organization & Design, Patterson & Hennessy
Chapter 4-4.4

Objectives: The Student shall be able to:

· Define the use of the following: IR, PC, register file, ALUout, multiplexer, instruction cache, data cache, control signals.

· Deduce the operations that are necessary to complete any specified instruction.

· Define and describe single-cycle and multi-cycle data path.
· Describe what happens in an exception or interrupt.

Class Time:

Lecture

1.5 hours

Lab

1.5 hours

 Total 3 hours

Components of the Processor

PC (Program Counter): Holds the address of the next instruction

IR (Instruction Register): Holds the executing instruction

Instruction Cache: ‘Fast’ memory where the next instruction comes from

Reg[index] (Register File): Contains the 32 registers

Arithmetic Logic Unit (ALU): Performs all arithmetic operations
Data Cache: Data read from or written to ‘fast’ memory
Control: Tells devices when to do their thing and what to do

· The op-code and function code define which control bits are raised.

· The edge of the clock cycle is when operations are initiated, registers are read.

Multiplexer: Multiple inputs selects one output based upon control signal(s)
· E.g. to the Register File: Are we reading from rt, rd or 31? RegDst control signals indicate

· E.g. to the ALU: Are we reading from the Instruction (Imm) or a register? ALUSrc control signals indicate.

· E.g. to Data out: send data from data cache, ALU, or next PC to register file? RegInSrc control signals indicate

Clock cycle:

[image: image1]
Single-Cycle Data Path: Each instruction executes in one clock cycle

Multi-Cycle Data Path: Each instruction takes multiple clock cycles

R/I/J instruction formats:

	Opcode

6 bits
	RS

5 bits
	RT

5 bits
	RD

5 bits
	Shift amt

5 bits
	Function Code 6 bits

	
	
	
	Immediate Operand

32 bits

	
	Jump Target Address

26 bits

Operations
Instruction Fetch Step

// Read into Instruction Register from Memory at address indicated by Program Counter register. This is always done, since we don’t know what type of instruction it is yet.

IR <= InstrCache[PC];

PC <= PC + 4;

// Increment Program Counter to point to next instruction

Assume this step takes 2 ns.

Instruction Decode and Register Read Step

// This is always done, since we don’t know what type of instruction it is yet.

RS <= RegFile[IR[25:21]];

RT <= RegFile[IR[20:16]];

Immediate <= sign-extend(IR[15:0]);

pcALUOut <= PC + (Immediate << 2);
 Assume this step takes 1 ns.
ALU Operation: This is instruction-specific, since control knows the instruction type.

R-Type Instruction: ALUOut <= RS op RT

Memory-Reference Instr: ALUOut <= RS + Immediate

Branch Instruction: If (RS compare RT) PC <= pcALUOut

Jump Instruction: PC <= (PC(31:28), (IR[25:0],2*b00))

Assume this step takes 2 ns.

Completion 1: Data Cache Access

R-Type Instruction: RegFile[IR[15:11]] <= ALUOut

(This instruction may occur in next step instead, depending on design)

Memory-Reference Instr:

Load Instr: DataCacheOut <= DataCache[ALUOut]

Store Instr: DataCache[ALUOut] <=RT
Assume this step takes 2 ns.

Completion 2: Register Write-Back

Load Instr: RegFile[IR[20:16]] <= DataCacheOut
Assume this step takes 1 ns.

Questions to consider:

· How long will an R-Type instruction take?

· How long will a Branch or Jump instruction take?

· How long will a Store instruction take?

· How long will a Load instruction take?

· With a single-cycle data path, how long should an instruction cycle be?

Single-Cycle Data Path:

· Every cycle must be equal length

· The cycle time must be long enough to accommodate the longest instruction.

Solution: Multi-cycle Data Path

· Have the cycle time coincide with the instruction stage time.

· Cycle time = 2 ns (time of longest stage)

· How long does it take to execute a Branch, Load, Store, Register instruction now?

· Between stages we need registers to hold data for next stage.
Exceptions

Exceptions can include:

· Integer or floating point overflow or underflow

· Invalid op-code

· Sensor indicates fault condition (e.g., overheating)

· Cache miss (data not in cache – must go to memory)

Actions taken with exception:

· Save reason in the Cause register
· Save address of current instruction in the Exception Program Counter (EPC) register
· Transfer control to address SysCallAddr

· Execute exception state logic
Exercise

Design the instructions:

addi $s1, $s2, 24
slt $t1,$s1,$s2
lw $s1,24($s2)

bne $zero,$t3,loop

sw $s3,25($s4)
jal target

Rising edge

