
Computer Architecture CS 355

Busses & I/O System

Text:

Computer Organization & Design, Patterson & Hennessy
Chapter 6.5-6.6

Objectives:
During this class the student shall learn to:

 Describe the two basic transactions that occur over a bus.

 Describe the basic use of the data, address, and control lines for a bus.

 Define the difference in operation between synchronous and asynchronous busses.

 Define basic definitions: memory-mapped I/O, polling, interrupts, parallel, serial, DMA, hot-

pluggable, daisy-chained.

 Relate how interrupts affect processing in an operating system

 Define interrupt vector, device driver, interrupt service routine, device controller.

 Contrast the efficiency of polling, interrupts, and DMA.

 Describe the 9 steps a processor takes to process interrupts (i.e., memorize).

Time Allocation:
Class time will be allocated as follows:

 Bus 1 hour

 I/O & Interrupts 1 hour

 Exercise 1 hour

 TOTAL: 3 hours

Bus Interfaces
Bus: Shared communication link, which uses a set of wires to connect multiple subsystems

 Can create a bottleneck since all commands/data pass through the bus

Bus transaction:

Types of Transactions:

 Read from memory or device

 Write to memory or device

Operation includes:

 Sending an address

 Sending or receiving data

Bus contains transactions or separate lines for:

Control (lines): Provides transaction command/response. For example:

 ReadRequest: Proc Device: Indicates data lines contain address to read

 DataReady: Proc Device: Indicates that the data lines contain data to write

 Ack: Acknowledges a DataReady or ReadRequest command

Data (lines): Transmit data

Address (lines): Transmit address of memory or device to interface with

Handshaking protocol: Sequence of transmissions completes the transaction.

 Standards define the protocol

Communications Schemes

Synchronous: Includes a clock (= a metronome) to time input/output

 Protocol interface defined as a schedule

 Requires every device to operate at that clock rate

 Requires short bus length to avoid clock skew

 Used for Processor-Memory Buses

Asynchronous: No clock is provided

 Requires a handshaking protocol to coordinate transmission

 Advantages: Variable speed, flexible bus length

 Used with I/O devices

Bandwidth:

 Serial: Transmits one bit at a time

 Parallel: Transmits multiple bits at a time

 Impacts speed: clock rate, number of pins (bits), optional address pins, etc.

 Currently high-speed serial point-to-point switched interconnections are popular

Robustness:

 Hot pluggable: Can plug in/remove nodes while bus is operating

 Parity checking: Includes an extra bit for error detection

 Detect and isolate malfunctioning units

Arbitration scheme:

Required when multiple nodes connected to a bus

 Daisy chained: Extensions connect different nodes in single line. Nodes share request &

grant signal and are linked according to priority.

 Self-selection: Addresses: 0001, 0011, 0111, 1111: First 1 bit transmitted wins.

Types of buses include:

 Processor-Memory Bus: Transfers data between the processor and memory

Usually synchronous

PC: Part of North Bridge

 I/O Bus: Transfers data between devices and processor.

Includes: FireWire, USB, SCSI, PCI

Usually asynchronous

PC: Part of South Bridge

 Internal/External Data width Peak Bandwidth

Firewire External – serial bus 4 50-100 MB/sec

USB 3.0 External - Devices 2 0.2 MB, 1.5 MB, 60

MB/sec, 10 Gb/sec

PCI Express

(Periph. Component

Interconnect)

Internal – computer

expansion bus

2 per lane 250 MB/sec (=1x)

1, 2, 4, 8, 15, 32 x

Serial ATA Internal - Disk 4 300 MB/sec

SCSI

(Small Comp. Sys.

Interface)

External – electrical

ribbon or optical

connectors

4 (8/16) 300 MB/sec

Memory-Mapped I/O: Addresses are allocated to specific devices. For example:

 0-ffff0000: Memory

 0xffff0000 (32 bits): Control Register for Keyboard

Bit 0: Device Ready: Data is ready to be read

Bit 1: Interrupt Enable: Device indicates if interrupts are enabled

0xffff0004 (32 bits): Keyboard data (to be read)

Bits 0-7: One ASCII byte read from keyboard

 ffff0008 (32 bits): Display Control Register

Bit 0: Device Ready: Data has been written

Bit 1: Interrupt Enable: Device indicates if interrupts are enabled

0xffff0004 (32 bits): Data to be displayed (or written)

Bits 0-7: One ASCII byte written to display

How it works

 When Data byte is read or written to, it clears the Device Ready

 Processor has an interrupt mask which defines which devices it is willing to accept interrupts

from

Alternative Scheme:

 Device I/O Commands: Special assembly language instructions exist to write to device

Polling: The processor regularly polls a device to determine if has completed its I/O operation

 While (Device_Ready == 0) ;

Interrupts: The device raises an interrupt control line to inform the processor when the I/O

operation is complete. The processor acknowledges via an interrupt ack control line.

Devices

DMA: Direct Memory Access: A device, which given an address and a length, will move the

associated memory to or from a device one byte/word at a time

 Prevents processor from having to handle interrupts on a word or byte basis

 CPU DMA MEMORY DEVICE
 Write 100 bytes to 0xfff0000

Hub: Device interfaces with multiple busses, repeats what it receives in all directions

Switch: Device interfaces with multiple busses, repeats what it receives in the direction of the

destination

Hub

Switch

I/O Hardware – Operating System Interface

Devices include:

 Storage devices: disk, floppy disk

 Communications devices: keyboard, display, serial port

Two types of devices:

Block-oriented: Transfers occur a block at a time (block = N bytes)

 E.g. disks, tapes.
Stream-oriented: Transfers occur one byte at a time. Includes:

 line-at-a-time: Processed only when End of Line is received
o E.g. terminal, network communications port

 byte-at-a-time: Each keystroke is significant.
o E.g. mouse, sensors.

Computer-Device Interface

Components of a Computer System

 Application Programming Interface (API): Common application interface

 Device Driver: S/W in O.S. memory gives orders to the device controller

 Interrupt Vector: Array of pointers to interrupt service routines, indexed by interrupting

device.

 In lower addresses of memory

 Alternatively a Cause register provides the source of the interrupt

 An Interrupt Mask is a set of bits defining the interrupt priorities that could be handled

Bus Interface: How Computer processor communicates with device

Components of Device

 Device Controller: Intelligence that drives device & communicates with CPU.

 Device (H/W)

Device Driver: Logic to control an external device.

 Includes logic to initialize device

 Initiates transmit or receive operation by placing command in command register of device

controller

 Includes interrupt service routine: Processes the interrupt when the operation is complete.

Reconfigurable Device Drivers

 Device & driver from third party (not OS distributer)

 Eliminates the need to recompile O.S. for each new driver

 Open Systems allow plug-in device drivers
o Defined API
o Allows device driver to allocate buffer space & manipulate kernel tables.

Device Controller: The intelligence in the device which interfaces with the computer

 Controller runs I/O Program and sets Status bits to indicate the status of the last requested

operation:

 Busy: Device is still executing the command

 Done: Operation is completed

 Error: Error code if operation failed

Performing I/O

Example: The device driver has a number of characters to send to a terminal.

To Begin Transmission:

 The device driver requests a UART (Universal Asynchronous Receiver Transmitter) to

transmit a byte. At 9600 bits per second, the byte will finish transmitting in 1 ms (0.00104

second).

 While the byte is transmitting the processor can wait OR the processor can do other work.

Three methods of receiving status from Device Controller:

1. If polling is used the device driver will busy-wait (test repeatedly) to see if the UART is

done.

2. If interrupts are used the processor performs other work until the UART indicates (via

interrupt) that the operation (transmit byte) is complete.

3. If DMA is used the DMA controller sends the entire packet and interrupts when packet is

sent.

 When the processor determines that the byte is transmitted (or received) the device driver

performs an I/O command to transfer (or receive) the next byte.

 Bytes are received/sent from a buffer, which must remain in memory.

 When buffer is empty, the interrupt must schedule a process to initialize new buffer for

transmit/receive and reissue communications command.

Types of Interrupts

High Priority: Cannot be inhibited

 Hardware Failure: E.g. Memory parity error or power failure

 Program:

 Arithmetic overflow

 Divide by zero

 Execute illegal instruction

Lower Priority: Inhibitable

 Timer: Interrupts the processor every n time units.

 I/O: Signals completion of an operation or an error condition.

 Software Trap: Command in system call interface changes mode from user to kernel mode

Definitions:

Steps by device driver to initiate an I/O operation include:

1. Wait for I/O device to become free

2. Prepare to request an I/O device to do an operation: Set up registers, buffers.

3. Perform the I/O command to initiate the operation.

4. When the external device is completed, the device interrupts the processor.

Interrupt Processing includes:

1. Device controller issues an interrupt signal to the processor.

2. Processor finishes execution of current instruction before checking for interrupt.

3. Processor sends an acknowledgment signal to the device that issued the interrupt.

4. Processor saves info on currently executing process (e.g. address of next instruction) on

stack.

5. Processor jumps to interrupt service routine.

6. Interrupt service routine saves off all registers (it will be using) onto stack.

7. Interrupt service routine handles the interrupt: e.g. put received data in a buffer or get next

byte from buffer to send; may start another I/O operation.

8. Interrupt service routine restores registers that were modified from stack.

9. Restore registers from stack and return to interrupted program.

Draw Interrupts:

Show the nine steps of processing an interrupt on the following graph. Assume input was

entered from the keyboard.

Interrupt Processing includes:

1. Device controller issues an interrupt signal to the processor.

2. Processor finishes execution of current instruction before checking for interrupt.

3. Processor sends an acknowledgment signal to the device that issued the interrupt.

4. Processor saves info on currently executing process (e.g. address of next instruction) on

stack.

5. Processor jumps to interrupt service routine.

6. Interrupt service routine saves off all registers (it will be using) onto stack.

7. Interrupt service routine handles the interrupt: e.g. put received data in a buffer or get next

byte from buffer to send; may start another I/O operation.

8. Interrupt service routine restores registers that were modified from stack.

9. Restore registers from stack and return to interrupted program.

CPU - ALU

Cache

Disc

Controller

USB

Cntrlr

Display

Controller

LAN

Controller

Memory-I/O

Bus

Memory

