
Cache 1

Cs 355 Computer Architecture

Cache & Memory

Text:

Computer Organization & Design, Patterson & Hennessy
Chapter 5-5.3, 5.8-5.9

Objectives: The Student shall be able to:

Define memory hierarchy, cache, cache line, cache hit rate, cache miss rate, hit time, miss

penalty, write-through, write-buffer, write-back, multilevel caching, l1/primary cache,

l2/secondary cache.

Describe how the principle of locality drives cache design.

Describe the difference between direct mapping, fully associative, and N-way set

associative cache organizations.

Calculate the execution time of direct mapping, fully associative, and N-way set

associative cache organizations, given a set of instructions.

Define wide memory organization, one-word wide memory organization, interleaved

memory organization.

 Calculate how long it would take to do reads assuming these different memory

organizations.

Class Time:

 Lecture 1.5 hours

 Exercises 1.5 hours

 Total 3 hours

Cache 2

Memory

Memory Hierarchy:

Faster memories are volatile, more expensive per bit, and thus smaller in quantity

Slower memories are cheaper, often non-volatile, and often large in quantity

Goal: Provide most memory possible at cheapest price but provide access time at fastest

speed.

Principle of Locality: programs access memory in a relatively small space at any

particular point in time

Temporal Locality: An accessed item is likely to be accessed again soon.

Spatial Locality: Items near an accessed item are likely to be accessed soon.

Is this true for both code and data? Discuss examples

DRAM (Dynamic Random-Access Memory): Used for main memory – larger capacity

for silicon use

SRAM (Static Random-Access Memory): Used for cache – faster

Flash Memory: Used as disk in embedded systems

Memory speeds do not keep pace with processor speeds

Memory is a bottleneck with respect to processor speed

Cache

Cache: The level of memory between the processor and main memory

Any memory storage that takes advantage of locality of access

 Cache Memory

Split Cache: Code and data have separate caches

Unified Cache: One cache for code and data

Cache Size: Number of bytes in cache.

Cache Line or Block: A read/write to/from cache transfers N bytes.

Hit Rate: The percentage of memory accesses that can be found in cache

Miss Rate: The percentage of memory accesses NOT found in cache

Cache 3

Hit Time: The time to retrieve a word from cache, when it is in cache

Cache Miss Penalty: Time to retrieve a word from next lower level of memory when

the word is not in cache; includes time to store block into cache.

How do we decide what to put in cache?

Not all of memory fits in cache

Principle of Locality says that most recently accessed memory goes in cache

How much memory do we read into cache at a time?

Principle of Locality says that access should be more than one word large: A block or line

is (e.g.) 4 words long

#CacheBlocks = CacheSize / BlockSize

How big should the cache block be?

Little Cache Blocks: Increase the miss rate

Big cache blocks:

Reduces number of total cache blocks; eventually increases the miss rate

Increase time to load cache block: increases the miss penalty

What happens when all of cache is filled up?

Overlay the Least Recently Used cache block

Writes are a concern: Inconsistency: When cache != memory

Write-Through: Each write updates both the cache and memory, ensuring consistency

But this slows writes down to memory’s time durations

Write Buffer: Holds data when a write is occurring to memory.

Allows for processor to continue processing even when a write is occurring

Write buffer is cleared when memory returns successful status

Larger write buffers prevent stalls due to write buffer full

If memory store time exceeds the average write generate time, buffering cannot help

Write-Back: Update memory only when cache is to be replaced

Solves the short write time problem

Sets Dirty Bit=1 when write is required

Often used in combination with Write Buffer

Example: Intrinsity FastMATH Processor

Embedded MIPS processor

Has an instruction cache and data cache

 Can simultaneously access an instruction and data word every cycle

Cache size = 4K words with 16-word blocks

Has write-through and write-back and 1-entry write buffer

Multilevel Caching: Two levels of cache:

Primary or L1 Cache: Small, expensive, very fast cache: 1 cycle access time

Secondary or L2 Cache: Large, cheaper, slower cache:

 Often < 10 processor cycles;

 Often 10 times size of L1 Cache

Cache 4

Memory: Often exceeds 100 processor cycles

How is memory stored in cache?

 Only a small portion of memory fits into cache.

 Most cache blocks are a fixed size with consecutive data

 Cache line(s) are accessed using an index calculated from the memory address

 Valid bit is set if data is present

 ‘Tag’ contains the upper part of the memory address; if match, desired data present.

Where do we put the line of memory in cache?

Multiple possible answers exist. Possibilities include:

Direct Mapped Caches

A memory address maps to one and only one cache block:

 BlockIndex = HighOrderMemoryAddress % NumberOfCacheBlocks

Any memory address can be divided into:

Tag Block index Byte # in cache block

The size of each field is:

Block index size = Size of # blocks in cache

Byte in block size = Size of number of bytes in block

Tag Size = Remainder of address bits

Example: Assume memory is initialized to contain its address as its value.

A very small cache looks like:

Tag

0x

Valid

Flag

Word 1 Word 2 Word 3 Word 4

00 1 0, 1, 2, 3 4, 5, 6, 7 8, 9, A, B C, D, E, F

01 1 50, 51, 52, 53 54, 55, 56, 57 58, 59, 5A, 5B 5C, 5D, 5E, 5F

00 1 20, 21, 22, 23 24, 25, 26, 27 28, 29, 2A, 2B 2C, 2D, 2E, 2F

02 1 B0, B1, B2, B3 B4, B5, B6, B7 B8, B9, BA, BB BC, BD, BE, BF

How big is the block? 16 bytes, requires lowest 4 bits of address: 0..F

How many blocks in the cache? 4 blocks, requires 2 middle bits of address: 00..11 or 0..3

How many bits in the tag? Remainder of address (upper part)

Calculate Addresses:

B1: 1011 0001 Lowest 4 bits defines byte in block = 0001

 Middle 2 bits defines block index into cache = 11

 Upper 2 bits defines tag = 10

Above, the Valid Flag indicates whether the block contains data or not.

Valid flags are not shown below but exist.

Example: What data is at 0x005a or binary address 0000 0001 01 1010?

Byte = 1010 Index = 01 Tag = 0000 0001 = 0x01

This address is in memory, since at index 1 there is tag 0x01. Byte addr[0xa]=5A

(Assumes big-endian addressing)

Fully Associative Cache

A block can be stored anywhere in cache (No index)

Cache 5

All cache block tags are searched simultaneously for the desired cache block

Each block must have a comparator to compare address: This is an expensive solution

Cache replaced is Least Recently Used (LRU)

Address is:

Tag Byte # in Cache Block

Example: Address 11110020

Number of bytes in cache row = 4 words = 16 bytes = 0..f. In this case 0000

Tag = remainder of address. In this case 1111.

Cache 6

Set Associative Cache

A memory address maps to N possible cache blocks:

 SetIndex = HighOrderMemoryAddress % NumberOfSetsInCache

N-Way Set Associative Cache: Any address can be stored in N blocks

Combines direct mapped placement with fully associative placement

The N blocks are search simultaneously for the desired tag.

A 4-Way Set Associative cache looks like:

SetIndex Tag Data Tag Data Tag Data Tag Data

0

1

Address is:

Tag Set # Byte # in Cache Block

Example: 10011110

Byte# = 4 words/cache row = 16 bytes = 0..f. In this example: 1110

Set# = 2 possible sets = 0..1. In this example: 1

Tag# = remainder bits in address. In this example: 100

Example 2: Is this address in cache? 100111101

A 4-Way Set Associative cache looks like:

Set Tag Data Tag Data Tag Data Tag Data

0 1100 1011 1000 1111

1 0000 0011 1001 1010

Answer: Separate address by field: tag=1001 set = 1 byte = 1101

Yes! Tag 1001 does exist in Set 1, and all bytes 0000..1111 are in the Data.

Cache 7

What happens when a cache miss occurs?

The pipeline stalls.

PC = original PC value

Request Read to main memory: 1 cycle

Read memory: 15 cycles

Transfer read to cache: 1 cycle

Restart the instruction to request Read from cache: 1 cycle

If each word needs to be requested from memory into cache, and cache block = 4 words,

then access time = (4*1) + (4*15) + 1 = 65 cycles

One-Word Wide: Each word is requested from memory individually – 4 accesses

Wide Memory Organization: Cache/Bus/Memory inerface is 2-word-size wide

Interleaved Memory Organization: Four memories exist and can do read

simultaneously – only one can transmit at a time

One-Word Wide Wide Memory Interleaved Memory

Memory Organization Organization Organization

Cache Memory Cache Memory Cache Memory

Addr1------------> Addr1-----------> Addr1----------->

 (15 cycles) (15 cycles) (15 cycles)

 <------------Write1 <-----------Write1 <------------Write(1)

(15 cycles) (15 cycles) <------------Write(2)

 <------------Write2 <------------Write2 <------------Write(3)

(15 cycles) <------------Write(4)

 <------------Write3

 (15 cycles)

 <------------Write4

Time = 1+(4*15)+(4*1)=65 1+(2*15)+(2*1)=33 1+(1*15)+(4*1)=20

Pipelined memory has 4 stages:

Address Translation: Reading the address into the memory for decode

Row decoding: Selecting the requested row in memory

Column decoding: Reading the row (all columns)

Tag validation: Does the memory tag read match the tag desired?

Multiprocessors & Caches

Caches are associated with one processor.

Is it possible for different processors’ caches to hold different data for an address?

Snoopy Cache: Caches share a bus, and they listen for other cache accesses.

 Multiple caches may contain the same data for READ purposes.

 Write Invalidate protocol ensures that newly WRITTEN data clears other caches for

that data.

 Write serialization: All writes must occur sequentially.

Cache 8

Cache Exercise
Assume the following scenario:

A cache has 4 blocks, where each block is 4 words.

Two caches exist, one each for code and data

Cache hit time is 1 cycle. Cache miss time is 20 cycles, using interleaved memory.

Cache is currently empty.

Assume Least Recently Used replacement algorithm is used for Writes.

Write-back occurs. However assume all reads below.

Part 1: Using a Direct Mapped Cache: Each address maps to one block via indexing

1A) Show how the bits are allocated in an address:

Tag:

 bits

Index:

 bits

Byte Number

 bits

1B) The instructions and data that are executed access the following addresses:

Code Address Read from C or M? Data Address Read from C or M? Delay

4001000 10020000

4001004 10020024

4001008

400100C

4001010

4001000 10020004

4001004 10020028

4001008

400100C

4001010

4001014

4001040

4001044 10020100

4001048 10020101

400104C 10020102

4001050

4001054

4001058 10020100

4001018

1C) Show what is in the tags for each cache block at the end of the program:

Instruction Cache Data Cache

Tag Value Address Range Tag Value Address Range

1D) What is the cache hit ratio?

Cache 9

Part 2: Using a 2-Way Set Associative Cache

In this configuration there are two sets, each with two possible blocks.

Use an index (modulo) to find the correct set, then select either block in the set.

2A) Show how the bits are allocated in an address:

Tag:

 bits

Set:

 bits

Byte Number:

 bits

2B) The instructions and data that are executed access the following addresses:

Code Address Read from C or M? Data Address Read from C or M? Delay

4001000 10020000

4001004 10020024

4001008

400100C

4001010

4001000 10020004

4001004 10020028

4001008

400100C

4001010

4001014

4001040

4001044 10020100

4001048 10020101

400104C 10020102

4001050

4001054

4001058 10020100

4001018

2C) Show what is in the tags for each cache block at the end of the program:

Instruction Cache Data Cache

Set

Number

Tag Value Address Range Set

Number

Tag Value Address Range

Set 0 Set 0

Set 1 Set 1

2D) What is the cache hit ratio?

Cache 10

Part 3: Use a Multilevel Cache

The primary cache access time is 1 cycle. The secondary cache access time is 5 cycles.

Both caches use Fully Associative organization: (i.e.) can place anywhere in cache.

The primary cache block size is 4 words. The secondary cache block size is 16 words.

3A) Show how the bits are allocated for the Primary & Secondary Cache address:

Primary Cache (C1)

Tag:

 bits

Byte Number:

 bits

Secondary Cache (C2)

Tag:

 bits

Byte Number:

 bits

3B) The instructions and data that are executed access the following addresses:

Code Address C1, C2, or M? Data Address C1, C2, or M? Delay

4001000 10020000

4001004 10020024

4001008

400100C

4001010

4001000 10020004

4001004 10020028

4001008

400100C

4001010

4001014

4001040

4001044 10020100

4001048 10020101

400104C 10020102

4001050

4001054

4001058 10020100

4001018

3C) Show what is in the tags for each cache block at the end of the program:

Instruction Primary Cache Data Primary Cache

Tag Value Address Range Tag Value Address Range

Cache 11

3D) Show what is in the tags for each cache block at the end of the program:

Secondary Instruction Cache Secondary Data Cache

Tag Value Address Range Tag Value Address Range

3E) Assume Interleaved Memory Organization is used. The secondary cache loading

time (for 16 words per cache line) would be: (See the appropriate notes.)

