Achieving Optimal Processor Efficiency
Introduction

Multiprocessors are supposed to be able to speed up performance, if different processes execute simultaneously.  This test will determine the extent of the speedup, when multiple processes are used to calculate prime numbers.

We hypothesize that there is an optimal number of processes, which is equivalent to the number of processors.  If too few processes are allocated, not all processors will be efficiently used.

Method

This program will find all prime numbers between 0 and the number specified as the ‘total’ variable.  The Factor program divides this set of numbers into equal portions, and allocates one of these series to each child process.  The Factor C++ program generates a variable number of processes, depending on the ‘numchild’ variable.  

Each child is responsible for finding all the prime numbers in the numeric series it is given.  This experiment is run to determine the speed of each test run, where each test run varies the number of child processes.  Between 1 and 8 child processes will be tested, for the fixed range of numbers from 0 to 400,000.

We might expect the total processing time to be:
Total_Time = Total_Time_for_1_child / min(#processors, #processes)


      (1)
Above, the time_for_1_child is the time for the program to complete, assuming no parallel programming.  You can observe processor utilization on Windows with Ctrl-Alt-Delete, and on Linux with the tool:

Applications-> System Tools-> System Monitor-> Resources

The files are in /home/student/Classes/Cs355/PrimeLab.  There are compile instructions in Factor.cpp.  To run the program, move the files in the PrimeLab directory to a location in your directory:

% cp /home/student/Classes/Cs355/PrimeLab/*  .

Then compile Factor.cpp into the Factor executable.  RunFactor is a program that records the time for the code to run:

% g++ Factor.cpp –o Factor


% chmod 700 Factor


% ./runFactor

To change the number of threads in the program, change the numChild value and recompile.  Try running 1-3 threads in lab.  Also try looking at the processor utilization per processor, using the System Monitor->resources tool.  The lab computers run 4 processors each.
Results

The following table shows the numeric results for the experiment (do 1-3 for lab):

	
	1
	2
	3
	4
	6
	8
	10
	100

	Actual Time
	
	
	
	
	
	
	
	

	Estimated Time
	
	
	
	
	
	
	
	


(Insert this table into Excel to create a chart showing the performance of each.  You can used copy-paste between Word and Excel.  To create a chart, highlight the table, then use Insert->Chart.)

Provide one chart related to your table, comparing actual times for different number of processes:

Analysis

Look not only at the total time taken to complete the job.  Also consider:

· Use debug statements to determine which processes are running on which processors.  Do processes change processors?

· Use debug statements to determine which processes take the longest to run.

· Use operating system utilities (Ctl-Alt-Delete in Windows) to look at processor utilization.  Are all processors equally utilized?
· Use Unix commands to sort and compare output from different runs.  This can verify if you have identical output or not.  Commands are:

$ sort output.txt > outputSort4.txt         Comment: sort output.txt into a new file outputSort4.txt

$ diff outputSort4.txt outputSort5.txt    Comment: compare sorted results from different # children
Consider why you got the results you got.  
· What is the Speedup observed for each case = TimeLong / TimeShort?
· Was the hypothesis correct, and the Estimated Time accurate?  
· There are two factors to consider: the number of processors on each computer, and the splitting of the algorithm over the processors.  How can you explain the results in light of these two issues?  

· Which set of numbers take the longest to run?  Why?  

· Do processes run in parallel simultaneously in one processor?  

· Does a process ever move from one processor to another?
· Are the results equally accurate?  (Do you get the same number of Primes per solution?)

· How did you figure out the answers to each question?
Conclusion  

What have you learned from this experiment?  How will you use your gained knowledge in the future?  Summarize.

Homework 1 Description
For this homework you will complete the full set of tests listed in the Table shown in the Results section.  You want to prepare one or two graphs showing your results, in addition to the table.  Also show how the actual results perform relative to expected results, assuming that the computers in the CS lab have 4 processors each.

Write a paper with the above outline (Introduction, Method, Results, Analysis, Conclusion).  You want to answer the questions described in the Analysis section, so this will take some debugging.  You can modify the lab code to print information as needed.  See the code comments (top of file) for how to recompile and execute.  Then describe how you planned to find your analysis answers in the Method section of your paper: what methods did you use to debug and answer the questions?

Your paper should mirror the outline above (without copying), but should be in more detail with more answers.

Submit your paper to D2L, with your code.  For the paper aspect, please submit in PDF form or native Microsoft Word form.

Exercise:  Discovering Devices
Directions:

1. List long (ls –l) the devices in the /dev directory.

2. Note the file type (first character) and translate using the list below.

3. Google the name to get info on the type of device OR use manual pages    (% man tty)
4. Document 8 device types.
Example:

lincke@cucumber:~$ ls –l /dev

Permiss. #lnk 
ownr grp        sizeB  
modifyTime
Name

crw-------.   1 
root root     10, 235 
Mar 28 11:55 
autofs

drwxr-xr-x. 2 
root root         160 
Mar 28 11:55 
block

drwxr-xr-x. 2 
root root          80 
Mar 28 11:55 
bsg

crw-------.   1
 root root     10, 234 
Mar 28 11:55 
btrfs-control

drwxr-xr-x. 3 
root root          60 
Mar 28 11:55 
bus
First character of permission shows file type:

     '-'          regular file

     'b'          block special file

     'c'          character special file

     'C'          high performance ("contiguous data") file

     'd'          directory

     'D'          door (Solaris 2.5 and up)

     'l'          symbolic link

     'M'         off-line ("migrated") file (Cray DMF)

     'n'          network special file (HP-UX)

     'p'          FIFO (named pipe)

     'P'          port (Solaris 10 and up)

     's'          socket

     '?'         some other file type

	Name &

Type
	Description

What it does, how it works.

	
	

	
	

	
	

	
	

	
	


Exercise: Observing Processes
	Method of Testing
	Results Observed

	Statement: Processes modify each other’s global variables and class attributes.

	
	

	Statement: Output is uncontrollably interspersed.

	
	

	Statement: A process, once allocated to a processor, never switches.

	
	

	Statement: Child processes are always put on separate processors.

	
	


