PAGE
7
Networks

Computer Network
Lab - Introduction to Network Sniffing
Text:

The Complete Reference: Network Security, Bragg, Rhodes-Ousley, Strassberg

Chapter 9

Objectives:

The student should be able to:

· Interpret output for ARP, IP, TCP, UDP, ICMP on a sniffer: Wireshark.

Class Time:

Lecture:

Lab

1.5 hour

Fixes: Setting up the filter, etc, is incorrect

Pull up my web page, not MS.

Summary of Networks & Protocols

Protocol Layers of the Internet Stack:

Application:

· SMTP: Simple Mail Transfer Protocol (Email): 25

· HTTP: HyperText Transfer Protocol (Web): 80

· Secure Shell: SSH, SFTP: 22
· SNMP: Simple Network Management Protocol: 161

· DNS: Domain Name Server: 53

· SSL: Secure Socket Layer: 443

Transport:

· TCP: Transport Control Protocol (End-to-End Error control: Retransmission)

· UDP: User Datagram Protocol (Only Port Addressing)

Network:

· IP: Internet Protocol (Routing)

· ICMP: Internet Control Message Protocol (Reports errors, performs tests for IP)

Data Link Layer:

· PPP: Point-to-Point Protocol (WAN)

Medium Access Control (MAC):

· Ethernet Protocol

· ARP: Address Resolution Protocol (Translates IP to MAC addresses)

High-Level Review of Protocols

Transport Control Protocol (TCP)

TCP is responsible for end-to-end retransmission, and reordering of packets received out-of-order.

· Addresses applications via 16-bit Port number

· Performs error control on an end-to-end basis:

· Reorders out-of-sequence segments

· Retransmits segments when acknowledgements are not received

· Performs flow control on an end-to-end basis (using the window)

· Performs congestion control to ensure network is not overwhelmed

Protocol:

TCP is connection-oriented, which means that it must explicitly establish and break down a connection before transmission occurs.

· Establishes a connection

· Sends data

· Each side gracefully disconnects

Windump TCP Data Format:

14:54:55.100898 IP 192.168.0.5.23 > 192.168.0.4.1226: F 1330:1330(0) ack 312 win 17209 (DF)

 time prot sourceIP.port > destIP.port: flag begSeq:endSeq(length) ackNr windowSize DF

Where:

Time: Time packet sent/received

Prot: protocol (IP)

SourceIP: Source IP address

DestIP: Destination IP address

Flag: S=SYN, F=FIN, P=PUSH, R=RESET

BegSeq: Beginning Sequence number (byte #)

EndSeq: Ending sequence number (byte #)

Length: Number of bytes

AckNr: Acknowledgment sequence number (=next expected seq #)

WindowSize: Size of empty space in receive buffer (in bytes)

DF: Don’t Fragment packets
The flags within segments that TCP uses includes:

S=SYN: Request to establish a connection

P=PUSH: Request from application to flush (or force) transmission.

F=FIN: Request to close a transmission - graceful

R=RESET: Notification of aborting of a connection

ack: Contains an ack for previous data

Segments with data in them have a byte count > 0.

Initiate a connection:

SYN
(

· SYN,ACK

ACK
(
Windump of establish connection:

14:54:50.191132 IP 192.168.0.4.1226 > 192.168.0.5.23: S 262694098:262694098(0) win 16384 <mss 1460,nop,nop,sackOK> (DF)

14:54:50.192200 IP 192.168.0.5.23 > 192.168.0.4.1226: S 116356462:116356462(0) ack 262694099 win 17520 <mss 1460,nop,nop,sackOK> (DF)

14:54:50.192249 IP 192.168.0.4.1226 > 192.168.0.5.23: . ack 1 win 17520 (DF)

Send data:

· Each byte of TCP data has a sequence number associated with it.

· The acknowledgment indicates the sequence number of the byte of data expected next

(PUSH)(

· ACK

Windump of data transmission:

14:54:54.898690 IP 192.168.0.5.23 > 192.168.0.4.1226: P 1300:1315(15) ack 309 win 17212 (DF)

14:54:54.929536 IP 192.168.0.4.1226 > 192.168.0.5.23: P 309:310(1) ack 1315 win 16206 (DF)

Terminate connection:

· Graceful Disconnect: Both sides must disconnect

FIN
(
· ACK

· FIN

ACK
(
Session Abort:

· Uses Reset

RST
(
Windump of close connection:

14:54:55.100898 IP 192.168.0.5.23 > 192.168.0.4.1226: F 1330:1330(0) ack 312 win 17209 (DF)

14:54:55.100964 IP 192.168.0.4.1226 > 192.168.0.5.23: . ack 1331 win 16191 (DF)

14:54:55.101465 IP 192.168.0.4.1226 > 192.168.0.5.23: F 312:312(0) ack 1331 win 16191 (DF)

14:54:55.102295 IP 192.168.0.5.23 > 192.168.0.4.1226: . ack 313 win 17209 (DF)

User Datagram Protocol (UDP)

UDP can be used instead of TCP to address an application

· Does NOT support end-to-end retransmission, reorder out-of-order packets, or perform flow control or congestion control.

· Addresses applications via 16-bit Port number

Protocol:

UDP is connectionless, which means it sends packets without establishing a connection first. If packets cannot be successfully sent, there may be no indication of failure.

· Sends data

Windump UDP Data Format:

14:54:55.100898 IP 192.168.0.5.138 > 192.168.0.4.138: UDP, length: 174

Internet Protocol (IP)

· Performs routing

· Addresses hosts

· Performs fragmentation/reassembly

IP Header:

[image: image1]
15:19:42.744527 IP 192.168.0.4 > 192.168.0.5: icmp 1480: echo request seq 7168 (frag 924:1480@0+)

 4500 05dc 039c 2000 8001 902b c0a8 0004

 c0a8 0005 0800 2859 0200 1c00 6162 6364

 6566 6768 696a 6b6c 6d6e 6f70 7172 7374

 7576 7761 6263 6465 6667 6869 6a6b 6c6d

 6e6f 7071 7273 7475 7677 6162 6364 6566

 6768

Internet Control Message Protocol (ICMP)

· Reports errors (e.g. Destination not reachable)

· Replies to requests (routing info)

· Test connectivity (ping)

Windump of Ping command:

15:19:42.744527 IP 192.168.0.4 > 192.168.0.5: icmp 1480: echo request seq 7168

15:19:42.748241 IP 192.168.0.5 > 192.168.0.4: icmp 1480: echo reply seq 7168

Note: 1480 is the length

15:19:42.748241 IP 192.168.0.5 > 192.168.0.4: 131.210.42.3 udp port 53 unreachable

Address Resolution Protocol (ARP)

· Converts an IP Address (192.164.53.25) to a MAC Address (e.g. 0:90:27:1c:50:d0)

Protocol:

· Requester broadcasts to all nodes on subnet: ARP Request (IP_Address)

· Replier (Me) sends: ARP Response (IP_Address, MAC Address)

Windump:

14:54:50.190823 arp who-has 192.168.0.5 tell 192.168.0.4

14:54:50.191108 arp reply 192.168.0.5 is-at 0:90:27:1c:50:d0

Domain Name Server (DNS)

· Converts a IP address name (e.g. www.cs.uwp.edu) to a numeric IP address, or vice versa.

Protocol:

· Request describes a name or numeric IP address to transfer

· Reply provides information about that IP address.

 Protocol Sniffing Lab

1) Using IPCONFIG to learn your IP address

In Windows the command is ‘ipconfig’ in a command window. In Linux the command is ‘ifconfig’.
Learn your IP address using ipconfig:

Start->Run

Open: cmd

> ipconfig

Your address is shown under ‘IPv4 address’. If you have both a wireless and Ethernet connectors, you may see two IP addresses for your machine.

1A) Your IP address is:

1B) What is your ‘Default Gateway’? This is the router that you send your packets to.
2) Getting Familiar with WireShark
To start wireshark execute:

Start->All Programs->Wireshark

Download a new version, if prompted. Restart Wireshark if so. You may see a screen with

Capture using this filter:

In that case, click on the Local Area Connection button and enter nothing (to get all packets). Later you may filter packets only for your computer, by entering as a filter either of the following two:

tcp

host <Your IP Address>

Then go to the top and select:

Capture-> Start
The screen has three parts:

· Top part: Abbreviated packet headers: 1 line = 1 packet
· Middle part: Details about a selected packet header

· Bottom part: Application data details

When you click on a packet header in the top part, the bottom parts will show the details. Further protocol header details will be expanded or contracted by clicking on the + or - sign in front of each packet header.
If packets are flowing too quickly for you to observe, you can select

Capture->Stop

Capture->Start (This will clear the screen and start over. If asked, select “Continue without saving”)

OR the 4th icon from left stops the capture.

2A) What protocols do you see running without filtering? Some are described in the front of this handout. List the protocols and briefly describe them by googling them to see what they do.
3) Filtering with Wireshark
You probably are seeing too much extraneous data to really observe anything. It is helpful to filter out all packets that are not going or coming from your terminal.

Select “Capture - Options”

(If asked, select “Continue without saving”)

We want to see only those packets that are for our host – not part of the regular network noise.

Here are some example Capture Filters that can be used:

tcp

host <your IP address>

tcp and host <yourIPaddress>

tcp port 80 and host <yourIPaddress>
You will enter a filter that monitors only the tcp protocol, which does not include broadcast messages. Now you should be seeing reduced traffic:

tcp

To generate traffic, open a web browser (e.g. Internet Explorer). You should see lots of TCP packets. When the full web page is up, you can stop the capture and scroll through the contents.

Look for the original HTTP packet, and just before it the TCP SYN, SYN-ACK and ACK packets that start the first connection. Click on the SYN packet. In the bottom half of the screen, the contents of that SYN packet will appear. Expand the contents of each protocol by selecting the + sign. Then complete the following details:
3A) Complete the following table:

	
	Source
	Destination

	IP Protocol:

IP Address

	
	

	TCP Protocol:

Port Numbers

	
	

	Sequence #
	Sequence Number:

	Acknowledgment Number:

Look for the last packet related to the web access, which may be a FIN (or FINISH) packet. You can find out how many bytes were sent and received by looking at the ending sequence numbers. Note that the source IP/Port has sent X bytes = Sequence Number and the destination IP/Port has sent Y bytes = Acknowledgment Number.

3B) How many bytes has the sender sent?

3C) How many bytes has the receiver sent?

3D) Did you see HTTP packets? Could you read the data in the bottom section?

3E) If you open a new web page, or change web pages, does a new TCP session open?
4) PLAYING WITH PING AND ARP
Next learn which IP addresses are in your ARP cache. The ARP protocol is responsible for translating IP addresses to MAC addresses. Perform the following command to see your ARP cache:

> arp -a

Find a machine that is NOT in your arp cache. Open another cmd window and try doing a PING to the IP address that is not in your arp cache. This will force the ARP protocol to run. Ping uses ICMP. ICMP is a protocol that provides error messages and implements network tools for IP. Ping sends an echo request packet to a remote destination and expects an echo reply packet back.

Open a second window to run ping, while the first window runs windump. Select another machine to ping:

> ping <your neighbor’s IP address>
4A) You should now see both arp and icmp messages. The arp messages provide the MAC address for the ping messages to use. Copy down the arp sequence. Circle the MAC address.

4B) Now copy down the ping exchange (one request-response sequence) seen in wireshark.

4C) Attempt to ping a machine that does not exist: 10.1.1.300. What sequence of protocols do you see? What ICMP message is eventually returned? What are the contents of the ICMP message?

4D) Attempt to access web pages that you know are and are not accessible. For example, access www.tomato.uwp.edu. What protocol informs you that the web page is not available?
Version

HLenth

Service Type

Total Length

Datagram Identification

Flags

Fragment Offset

Time to Live

Protocol

Header Checksum

Source IP Address

Destination IP Address

0	 4 8		 16 17 18 19 31

