
Binary-Hexadecimal Worksheet 1

CS 245 Assembly Language Programming

Intro to Computer Math

Text: Computer Organization and Design, 4
th

 Ed., D A Patterson, J L Hennessy

Section 2.4

Objectives: The Student shall be able to:

 Convert numbers between decimal, binary, hexadecimal

 Add binary and hexadecimal numbers.

 Perform logical operations: AND and OR on binary or hexadecimal numbers

 Determine the range of possible numbers given a number of bits for storage.

 Form or translate a negative number from a positive number and vice versa.

Class Time:

 Binary, Octal, Hexadecimal 1 hour

 Signed and Unsigned numbers 1 hour

 Exercise 1 hour

 Total 3 hours

Binary-Hexadecimal Worksheet 2

Hello Binary!

Imagine a world of 1s and 0s – no other numbers exist. Welcome to the world of the

computer. This is how information and instructions are stored in the computer.

Well, what happens when we add 1+1? We must get 10.

What happens if we add 10+1? We get 11.

What happens if we add 11+1? We get 100. Do you see the pattern? Try it for yourself

below, by continually adding one to get the decimal number on the left:

1 1 11 21

2 10 12 22

3 11 13 23

4 100 14 24

5 101 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

Notice: what is the value of each digit? For example, if we have a binary number: B11111

what does each binary number stand for? For example, in decimal the 11111 number would

be: 1+10+100+1000+10,000. Using the same idea, what do the binary values: 1, 10, 100,

1000, 10000 translate into in decimal?

Do you notice that each binary digit is basically a double of the digit to its right?

 1 1 1 1 1 1 1 1

 128 64 32 16 8 4 2 1

That is very important to remember. Always remember that each place is multiplied by 2!

Translate the following binary numbers to decimal using this rule:

 B 1010101 =

 B 0101010 =

 B 1110001 =

 B 1100110 =

Binary-Hexadecimal Worksheet 3

EXERCISE: BINARY ADDITION

Addition using Binary Checking with Decimal

B 0101 + B 1010 = B 1111 5 + 10 = 15

B 1100 + B 0011 = B 1111 12 + 3 = 15

B 1001 + B 0011 = B 1100 9 + 3 = 12

Let’s try something more complicated: B 1111 1111 + B 1001 1100 =

Carry: 1 1 1 1 1

 B 1 1 1 1 1 1 1 1

 +B 1 0 0 1 1 1 0 0

 B11 0 0 1 1 0 1 1

Add the following numbers:

Binary Check your work with the

Decimal Equivalent

0001

0110

0011

0100

1011

1001

1001 1001

0110 0110

1000 0000

0001 1111

1010 1010

0101 0111

1001 1001

1100 1100

Binary-Hexadecimal Worksheet 4

EXERCISE: AND & OR

Now let’s play with AND and OR.

AND: If both bits are set, set the result: &

OR: If either bit is set, set the result: |

We can define truth tables for these operations. The bold italicized numbers IN the table are

the answers. The column header and row header are the two numbers being operated on.

AND & 0 1

0 0 0

1 0 1

This table shows that:

0 & 0 = 0 1 & 0 = 0 0 & 1 = 0 1 & 1 = 1

OR | 0 1

0 0 1

1 1 1

This table shows that:

0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1

I will show how these operations work with larger binary numbers:

 B 1010101 B 1010101 B 1010101 B 1010101

 & B 0101010 | B 0101010 AND B 1110001 OR B 1110001

 B 0000000 B 1111111 B 1010001 B 1110101

Now you try some:

 B 1100110 B 1100110 B 0111110 B 0111110

 AND B 1111000 OR B 1111000 & B 1001001 | B 1001001

Below, show what binary value you would use to accomplish the operation. Then do the

operation to verify that it works! Bits are ordered: 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0

Using ORs to turn on bits: Using ANDs to turn off bits:

B 000 0000

Turn on bits 0-3

B 1111 1111

Turn off bits 3-4

B 1111 0000

Turn on bit 0

B 1111 1111

Turn off bits 0-3

B 0000 1111

Turn on bits 3-4

B 1111 0000

Turn off bits 0-4

Binary-Hexadecimal Worksheet 5

Let’s build a table for each numbering system. You fill in the blanks…

Decimal =

Base 10

Binary =

Base 2

Octal =

Base 8

Hexadecimal

 = Base 16

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10

17 10001 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

21 10101 25 15

22 10110 26 16

23 27 17

24 11000 30 18

25 11001 31 19

26 11010 32 1A

27 11011 33

28 11100 34

29 11101 35

30 11110 36 1E

31 11111 37 1F

32 100000 40 20

There is something very special about Base 8 and Base 16 – they are compatible with Base 2.

So for example, let’s take the binary number11000 = 2410. Notice that Base 8 operates

basically modulo 8, whereas base 16 operates modulo 16. It is not easy to convert between

decimal and binary, but it is easy to convert between binary and octal or hexadecimal.

It is useful to know that the octal or base 8 number 3248 = (3 x 8
2
) + (2 x 8) + 4

And the hexadecimal or base 16 number 32416 = (3 x 16
2
) + (2 x 16) + 4

Binary-Hexadecimal Worksheet 6

Hello Octal!
Binary is rather tedious isn’t it? It is hard to keep track of all those 1s and 0s. So someone

invented base 8 and base 16. These are also known as octal and hexadecimal systems,

respectively. The octal (base 8) numbering system works as follows:

Base 8: 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30

To convert between binary and octal:

Step 1: group the binary digits by threes, similar to how we use commas with large numbers:

B 110011001100 becomes B 110 011 001 100

B 11110000 becomes B 11 110 000

Step 2: Add zeros to the left (most significant digits) to make all numbers 3 bit numbers:

B 11 110 000 becomes B 011 110 000

Step 3: Now convert each three bit number into a octal number: 0..7

B 110 011 001 100 becomes 63148

B 011 110 000 becomes 3608

Likewise we can convert from Octal to Binary:

 5778 = 101 111 111

 12348 = 001 010 011 100

Now you try!

Binary -> Octal Octal -> Binary

B 01101001=

2648=

B 10101010=

7018=

B 11000011=

0768=

B 10100101=

5678=

If we want to convert from octal to decimal, we do:

 8938 = (8x8
2
) + (9x8

1
) + (3x8

0
) = 8x64 + 9x8 + 3 = 587

Now you try! 1278 = 10008=

 648= 2128=

Binary-Hexadecimal Worksheet 7

Hello Hexadecimal!
The hexadecimal (base 16) number systems work as follows:

Base 16: 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

Since base 16 needs more digits (after 9) we add A B C D E F. Therefore, A=10, B=11,

C=12, etc. It helps to be able to memorize some hexadecimal digits. For example I

remember that:

 0xA = 1010 = 10102

 0xC = 1210 = 11002

 0xF = 1510 = 11112

and then I simply remember that B1101 = B1100 (or 12) +1 = 13.

To convert from binary to hexadecimal:

Step 1: group the binary digits by fours. A 4-bit number is called a nibble:

B 110011001100 becomes B 1100 1100 1100

B 11110000 becomes B 1111 0000

B 111000111 becomes B 1 1100 0111

You may use commas, instead of or in addition to spaces, to separate digits.

Step 2: Add zeros to the left (most significant digits) to make all numbers 4 bit numbers:

B 1 1100 0111 becomes B 0001 1100 0111

Step 3: Now convert each three bit number into a hexadecimal number: 0..7

B 1100 1100 1100 becomes 0x ccc

B 1111 0000 becomes 0x f0

B 0001 1100 0111 becomes 0x 1c7

It is good to get some practice! Try translating the following numbers to hexadecimal:

Binary Hexadecimal Binary Hexadecimal

10011001 = 1001 1001 0x99 0011 1100

11001110 =

1100 1110

0xCE 0001 1110

101111 = 10 1111 0x2F 1110 0001

0011 0011 1011 0100

1100 0011 0110 1001

1010 0101 0101 1010

1001 1001 1100 0011

Binary-Hexadecimal Worksheet 8

Now convert from hexadecimal back to binary:

Hexadecimal Binary Hexadecimal Binary

0x23

 0x31

0x4a

 0x58

0x18A

0001 1000 1010 0xAB1

0x23F

 0xC0D

0x44

 0xF00 1111 0000 0000

0x3C

 0x28

0x58

 0x49

Okay, now we can convert between binary and hexadecimal and we can do ANDs and ORs.

Let’s try doing these together. Let’s AND hexadecimal numbers together:

0x254 AND 0x0f0 = 0010, 0101, 0100

 & 0000, 1111, 0000

 0000, 0101, 0000 = 0x 050

Notice that what we are doing is that we convert the hexadecimal to binary, and do the AND,

and convert the resulting binary digits back to hexadecimal. Let’s try an OR:

0x254 OR 0x0f0 = 0010, 0101, 0100

 | 0000, 1111, 0000

 0010, 1111, 0100 = 0x 2f4

ANDs and ORs are useful to turn on and off specific bits. Now you do some:

0x1a3 & 0x111 = 0x273 & 0x032 =

0x1a3 | 0x111= 0x273 | 0x032 =

Binary-Hexadecimal Worksheet 9

 Conversions: Hexadecimal  Binary  Decimal
There are two ways to convert between Base 16 or Base 8 … and Decimal.

Method 1: Convert to Binary, then Decimal:

 0x1af = 0001 1010 1111

 = 2
0
 + 2

1
 + 2

2
 + 2

3
 + 2

5
 + 2

7
 + 2

8

 = 1 + 2 + 4 + 8 + 32 + 128 + 256

 = 43110

 0x456 = 0100 0101 0110 = 2
10

+2
6
+2

4
+2

2
+2

1
 = 1024 + 64 + 16 + 4 + 2 = 111010

Method 2: Use division remainders:

Convert from base 10 to base N (Example base 2):

Number / 2 -> remainder is digit0

 -> quotient / 2 -> remainder is digit1

 -> quotient / 2 -> remainder is digit2

 …

Example 1: Convert 3610 into binary:

 Quotient/2 ->Remainder

 36/2 ->0

 18/2 ->0

 9/2 ->1

 4/2 ->0

 2/2 ->0

 1/2 ->1

 3610 = 1001002

Example 2: Convert 3610 into base 16:

 36/16 ->4

 2/16 ->2

 3610 = 2416

Example 3: Convert 0x1af to base 10:

 0x1af = 1 x 16
2

 = = 256

 a x 16 = 10 x 16 = 160

 f = +15

 Total = 43110

Now you try some conversions between base 16 and base 10 (Your choice of method!)

0x AC4= 0x C4A=

4310= 16210=

Binary-Hexadecimal Worksheet 10

Signed & Unsigned Numbers

Assuming 1 byte:

Binary Signed Unsigned

00000000 0 0

00000001 1 1

00000010 2 2

01111110 +126 +126

01111111 +127 +127

10000000 -128 +128

10000001 -127 +129

10000010 -126 +130

11111110 -2 +254

11111111 -1 +255

Notice that you get HALF of the total positive numbers with signed integers!!!

Example: Convert 10101010 to a signed 8-bit integer:

Converting to Decimal: Powers of Two

The sign bit (bit 7) indicates both sign and value:

If top N bit is ‘0’, sign & all values are positive: top set value: 2
N

If top N bit is ‘1’, sign is negative: -2
N

Remaining bits are calculated as positive values:

 10101010 = -2
7
 + 2

5
 + 2

3
 + 2

1
 = -128 + 32 + 8 + 2 = -86

 01010101 = 2
6
 + 2

4
 + 2

2
 + 2

0
 = 64 + 16 + 4 + 1 = 85

Changing Signs: Two’s Compliment

A positive number may be made negative and vice versa using this technique

Method: Take the inverse of the original number and add 1.

Original: 01010101 = 85 10101011 = -85

invert: 10101010 01010100

add 1: +1 +1

sum: 10101011 = -85 01010101 = 85

First we determine what the range of numbers is for signed versus unsigned numbers:

 4 bits 8 bits 12 bits

 Low High Low High Low High

Unsigned

0000 1111

Signed

1000 0111

Total

number of

possible

numbers

Unsigned:

Low = 0 High = 15

Set of 16 numbers

Binary-Hexadecimal Worksheet 11

Now you try some conversions between positive and negative numbers. Assume 8-bit signed

numbers (and top bit is signed bit).

Hexadecimal

value:

Actual Signed Decimal Value: Change sign:

0x 87 -2
7
+2

2
+2

1
+2

0
 =

-128 + 7 = -121

In binary: 1000 0111

Invert: 0111 1000

Add 1: 0111 1001 = 0x 79

Translate: 64+32+16+8+1=121

0x ba

0x fc

0x 03

0x 81

0x 33

Binary-Hexadecimal Worksheet 12

Real-World Exercise: Conversion

Let’s do something USEFUL! Below is a table to show how IP headers are formatted. In

yellow is shown the formatting for an ICMP header for a PING message.

You are writing logic to decode this hexadecimal sequence and now you want to verify that

the interpreted packet is correct – you must convert it manually to verify!

 4500 05dc 039c 2000 8001 902b c0a8 0004

 c0a8 0005 0800 2859 0200 1c00 6162 6364

 6566 6768 696a 6b6c 6d6e 6f70 7172 7374

What are the decimal values for the following fields:

Word 1: Version: HLenth: Total Length:

Word 2: Datagram Id: Fragment Offset:

Word 2: A flag is a one-bit field. Flags include bits 16-18:

Don’t Fragment (Bit 17): More Fragment (Bit 18):

Word 3: Time to Live: Protocol:

For the two addresses below, convert each byte in word to decimal and separate by periods

(e.g., 12.240.32.64):

Word 4: Source IP Address:

Word 5: Destination IP Address:

ICMP: Type: Code: Sequence Number:

Version HLenth Service Type Total Length

Datagram Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Type Code Checksum

Identifier Sequence Number

Data

0 4 8 16 17 18 19 31

