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Floating Point Arithmetic


CS 245 Assembly Language Programming
Floating Point Arithmetic

 

Text: Computer Organization and Design, 4th Ed., D A Patterson, J L Hennessy
Sections 3.5-3.8, Pages B.73-B.80
 

Objectives:  The Student shall be able to:

· Convert a fraction to normalized form

· Convert a decimal fraction to a binary point form and vice versa.

· Perform addition and multiplication with floating point numbers

· Convert a fraction to IEEE 754 float or double form (given offsets)

· Define overflow and underflow, NAN.

· Program assembly language using floating point instructions.

 

Class Time:


Lecture – Binary fractions, addition, mult.
1 hour


Exercise




1 hour


Lecture – Floating Point formats

1 hour


Exercise




1 hour


Lab





½ hour

            Total                                                                4.5 hours

Fractions: Decimal & Binary

Floating Point is used for Reals or Fractions

Binary numbers are translated as:


25 24 23 22 21 20 . 2-1 2-2 2-3 2-4

Which is equivalent to:

25 24 23 22 21 20 . 1/21 1/22 1/23 1/24
Example:


11.011 = 21 + 20 + 1/22 + 1/23


= 2 + 1 + ¼ + 1/8 = 3 3/8
Decimal Point (( Binary Point (( Hexadecimal Point

Base 2 -> Base 10
Convert 0.12 to Base 10


0.12 = 1 x 2-1 = 1 / 21 = ½ = 0.510
Convert 0.0012 to Base 10


0.0012 = 1 x 2-3 = 1 / 23 = 1 / 8 = 0.125

Convert 0.011 to Base 10


0.0112 = 1 / 22 + 1 / 23 = ¼ + 1/8 = 3/8 = 0.375

Base 10->Base 2
To convert from Decimal to Binary the steps are as follows:

Multiply the decimal fraction by 2.

If result >= 1.0 


Digit for answer is 1


Fractional part is used for next iteration


Repeat:



Multiply the decimal fraction by 2



If result >= 1.0 …

Example:

Find value for .375


.375 x 2 = .750
=> 0


.750 x 2 = 1.5

=> 1


.5 x 2 = 1.0

=> 1


(No fraction remaining)


Answer = 0.011

Validate answer:


0.011B = 1/22 + 1/23 = ¼ + 1/8 = .25 + .125 = .375

More Examples:

Convert 0.510 to Base 2


0.5 x 2 = 1.0    
=> 1


0 x 2 = 0

=> 0


Answer: 0.510 = 0.12
Convert 0.7510 to Base 2


0.75 x 2 = 1.5

=> 1


0.5 x 2 = 1.0

=> 1


0 x 2 = 0

=> 0


Answer: 0.7510 = 0.112

Convert 0.2AD16 to Base 2 then to Base 10

0.2AD16 = 0.0010 1010 11012


= 2-3 + 2-5 + 2-7 + 2-9 + 2-10 + 2-12


= 0.16723632812510

Convert 0.2AD16 to Base 10


f=0


f=(0+D)/16 = 13/16 = 0.8125


f = (0.8125+A)/16 = 10.8125/16 = 0.67578125


f = (0.67578125+2)/16 = 0.16723633


Answer 0.2AD16 = 0.1672363310
Normalized Form

Fraction Notation:

Normalized form = 1 significant digit

	Fraction
	Normalized Form

	254.66
	2.5466 x 102

	0.0003
	3.0 x 10-4

	0.00254
	2.54 x 10-3


To convert to normalized form:

· When decimal point does not move, multiply by 100 (=1)

· When decimal point moves left 1, add 1 to exponent

· When decimal point moves right 1, subtract one from exponent

Example: 


1000000000B = 1000000000B*20


1000000000B = 100000000B*21

1000000000B = 1*29
Example 2:


0.0001B = 0.0001B*20

0.0001B = 0.001B*1/2 = 0.001B*2-1

0.0001B = 1.0B*2-4

Binary Point Normalized Notation


25610
=   100000000B
=   1 x 28

810
=   1000B

=   1 x 23

210
=   10B


=   1 x 21

0.510
=   0.1B

=   1 x 2-1

0.7510
=   0.11B

=   1.1 x 2-1
Addition

Example:  Add 99.9910 + 0.161010

· 99.99 = 9.999 x 101
· 0.1610 = 1.610 x 10-1 
To add the two numbers, we must convert first to the larger magnitude: 101
· 1.610 x 10-1 = 0.01610x101
Now we can add the fractions: 9.999 + 0.01610 = 10.01510

· Result: 10.01510 x 101
· Round (assuming 4 fractional digits):  10.02 x 101
· Renormalize: 1.002 x 102
Example:  Add in binary: 0.510 + -0.437510

· 0.510 = 1/2 = 1/21 = 0.1B = 1.0 x 2-1

· -0.437510 = -7/16 = -7/24 = -.0111B = -1.11 x 2-2
Convert to the larger magnitude: 2-1
· 1.0 + -0.111 = 0.001

· Result:  0.001 x 2-1 = 1 x 2-4 = 1/24 = 1/16 = 0.0625

Multiplication:

Multiply 5 x 103 by 3 x 10-2
· Without exponents: 5000 x .03 = 150.00

· With exponents:   

Multiply fractions: 5 x 3 = 15


Add exponents: 3 – 2 = 1


Result: 15 x 101 = 150

Floating Point Formats

Floating Point Format in Computer:


Example = -25 x 232 => Format = (Sign) (Fraction) x 2(Exponent)

Float = 32 bits

	Sign

(1 Bit)

1=negative
	Exponent

(8 bits)
	Fraction

(23 bits)


Numbers range between 2x10-38 to 2x1038

Double = 64 bits

	Sign

(1 Bit)

1=negative
	Exponent

(11 bits)
	Fraction

(52 bit fraction)


Numbers range between 2x10-308 to 2x10308

Reduce the number of Binary Digits

· In normalized form each FRACTION is in the form:  1.ffff x 2eeee
· To get one additional bit of accuracy it is possible to ASSUME the 1. part above.

· Thus the FRACTION part contains ‘.ffff’

· When reconstructing the number, you must add: 1 + .ffff to get the original: 1.ffff

Comparisons

To compare two numbers

· The exponent = magnitude and comes before the fraction.  Therefore…

· Comparisons should be easy:  numbers with larger exponents > numbers with smaller exponents

· However…

· Fractions normally use negative exponents: e.g. 11101010

· Large integers use positive exponents: e.g., 00001010

· When comparing two numbers:   11101010 > 00001010

· Solution:  Bias each float exponent by 127:  EXPONENT = eeee + 127

· Solution:  Bias each double-precision exponent by 1023.

· When reconstructing the original: eeee = EXPONENT - 127

Most negative exponent=00000000B

Most positive exponent=11111111B

When comparing two numbers:

· First compare sign bit: 0 > 1    // positives > negatives

· Next compare exponent || fraction:  larger numbers > smaller numbers

Example:  Creating an IEEE floating point number

Assume 50.010 = 110010B = 1.10010 x 25
exponent=5
fraction=10010
sign=0

Sign=0  (positive)

Exponent = exponent + 12710 = 101B + 1111111B = 10000100B



Or (in decimal) 5 + 127 = 132 = 10000100B

Fraction = 100100000…
Number = 0…100,0010,0…100,1000,0000,0000,0000,0000 = 0x42480000
Now lets convert back to make sure we did it correctly:

0…100,0010,0…100,1000,0000,0000,0000,0000
Sign = 0 = positive

Exponent = 10000100 - 1111111 = 101 = 5



Or (in decimal) 132 – 127 = 5

Fraction = 0.10010 + 1.0 = 1.10010

Number = 1.10010x25 = 110010 = 32 + 16 + 2 = 50!

Correct!

Problems:

Overflow:  Exponent on math operation becomes too large to represent number

· E.g., Multiply by 2 (or -2) in infinite loop => +∞, -∞
Underflow:  Exponent on math operation becomes too small to represent number

· E.g., Divide by 2 in infinite loop => 0

When an invalid operation occurs
· NaN: Not a Number = operations using infinity, divide by 0
· Exponent value is set to 255.

Floating Point Instructions

Floating-point coprocessor = coprocessor 1

· 32 floating point registers: $f0-$f31

· Each register is 32 bits

· Doubles require 2 registers: specify even register

Instructions:

Load/Store


# addr = address in data section, $f = float register
lwc1 
$fdest, addr

# load single from addr containing integer (load word coproc 1)

l.s
$fdest, addr

# load single from addr containing single = lwc1

l.d
$fdest, addr

# load double from addr containing double

mov.d
$fdest, $fsrc

# fdest = fsrc

mov.s
$fdest, $fsrc

# fdest = fsrc

mfc1
$dest, $fsrc

# Move from Coproc. 1: CPUdest = fsrc

mfc1.d
$dest, $fsrc

# CPUdest || CPUdest+1 = fsrc||fsrc+1  // move double

mtc1
$rsrc,$fdest

# fdest = rsrc

s.d
$fsrc, address

# store double from fsrc in fractional form

s.s
$fsrc, address

# store single from fsrc

swc1
$fsrc, address

# store word from fsrc

sdc1
$fsrc, address

# store double word from fsrc // where fsrc = even reg.

Arithmetic Operations

add.d
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 + fsrc2  (double)

add.s
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 + fsrc2  (single)

sub.d
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 - fsrc2  (double)

sub.s
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 - fsrc2  (single)

mul.d
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 * fsrc2  (double)

mul.s
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 * fsrc2  (single)

div.d
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 / fsrc2  (double)

div.s
$fdest, $fsrc1, $fsrc2

# fdest = fsrc1 / fsrc2  (single)

neg.d
$fdest, $fsrc


# fdest = -fsrc  (double)

neg.s
$fdest, $fsrc1


# fdest = -fsrc (single)

Other mathematical operations 

These are shown with single precision (s) but double precision (d) is also available

abs.s
$fdest, $fsrc


# fdest = |fsrc|

sqrt.s
$fdest, $fsrc


# fdest = root(fsrc)

Conversions

Floating point registers can contain integer formats - you must keep track.  In all cases below, operations can be done either with single or double precision.

cvt.d.s

$fdest, $fsrc

# fdest = (double) fsrc

// single ( double

cvt.s.d

$fdest, $fsrc

# fdest = (single) fsrc

// double ( single

cvt.s.w

$fdest, $fsrc

# fdest = (single) fsrc

// int ( single

cvt.d.w

$fdest, $fsrc

# fdest = (double) fsrc

// int ( double

cvt.w.s

$fdest, $fsrc

# fdest = (single) fsrc

// int ( single

cvt.w.d

$fdest, $fsrc

# fdest = (double) fsrc

// int ( double

ceil.w.s
$fdest, $fsrc

# fdest = (integer rounded up) fsrc

floor.w.d
$fdest, $fsrc

# fdest = (integer rounded down) fsrc

trunc.w.s
$fdest, $fsrc

# fdest = (truncated integer) fsrc

round.w.s
$fdest, $fsrc

# fdest = rount(fsrc)

Comparisons

Eight condition codes (cc) exist, where the flip-flop is set
Replace cc below with a number between 0..7

c.eq.s
cc $fsrc1, $fsrc2

# cc = (fsrc1 == fsrc2)

c.lt.s
cc $fsrc1, $fsrc2

# cc = (fsrc1 <   fsrc2)

c.le.s
cc $fsrc1, $fsrc2

# cc = (fsrc1 <= fsrc2)

bc1f
cc label


# if cc == 0 (false) then branch

bc1t
cc label


# if cc == 1 (true) then branch

movf.d $fdest, $fsrc, cc

# if cc == 1 then $fdest = $fsrc

E.g.,
c.eq.d
0  $f0,$f2

# if $f0==F2 then set cc0 to 1


bc1f 
0  label

Other test conditions: ge, gt, ne, also exist.  Other conditional move instructions exist too.
NOTE: USE CC CODE = 0!  OTHER CC CODES DO NOT WORK WITH XSPIM!

System Calls: Reading & Printing

Printing:  Register conventions:

Print float:
$v0=2

$f12=float register to print
Print double:
$v0=3

$f12=double register to print
Reading:  Register conventions:

Read float:
$v0=6

$f0=float is returned in reg $f0
Read double:
$v0=7

$f0=double is returned in reg $f0
Example:


# print (total+count);


li
$v0, 2


add.s
$f12,$f2,$f12


syscall
Allocating Data

#



# Creating two variables: tax[0]=0.05; tax[1]=0.06

tax:
.float
0.05, 0.06

#



# Creating double precision variables.

dprec:
.double
0.3552, 0.4422, 13.3232

Floating Point Example

Thanks Josh!!!

#       Name:           Josh Odom

#       Course:         Cs355

#       Assignment:     1

#       Program:        2

#

#       This program will prompt the user for 5 numbers, and it will average

#
them and display the result.


.data

#



the double constant for 5

five:
.double
5.0

#



the double constant for 0

zero:
.double
0.0

#



a greeting message

greet:
.asciiz
"Enter 5 numbers, and I'll average them for you.\n"

#



the first part of the input display

first:
.asciiz
"Enter "

#



the last part of the input display

last:
.asciiz " number: "

#



the endings for 1, 2, 3, 4, 5

nums:
.asciiz  "st", "nd", "rd", "th", "th"

#



a message for the result

average:.asciiz 
"The average is: "


.text


.globl main

main:

AVG00:

#



save $ra on stack

addi
$sp,$sp,-4


sw
$ra,0($sp)
#



$s0 is the current value, $s1 is 1 past the

#



last value


li
$s0, 0


li
$s1, 5

#



set the running total to 0


ldc1
$f12, zero

#



display greeting


li
$v0, 4


la
$a0, greet


syscall

AVG01:

#



store $s0 in the first argument, and do a call

#



to the print routine


move
$a0, $s0


jal PRT00

#



get a double from the keyboard


li
$v0, 7


syscall

#



add the new double to the running total


add.d
$f12, $f0, $f12


#



increment the counter


addi
$s0, $s0, 1

#



once the counter reaches 5, then break


bne
$s0, $s1, AVG01

#



display a message for the result


li
$v0, 4


la
$a0, average


syscall

#



find the average of the numbers


ldc1
$f0, five


div.d
$f12, $f12, $f0

#



display that average


li
$v0, 3


syscall

#



return the old $ra back to its proper position


lw
$ra,0($sp)

addi
$sp,$sp,4

#



return


jr $ra

PRT00:


addi
$sp,$sp,-4


sw
$ra,0($sp)

#



save $a0 in $t0


move
$t0, $a0

#



display the first part of the input message


li
$v0, 4


la
$a0, first


syscall

#



display which number we're one (one more than

#



the number we got


li
$v0, 1


addi
$a0, $t0, 1


syscall

#



multiply the number we got by three, and that's

#



the offset for the correct number suffix (1st, 2nd, 3rd, …)


mul
$t0, $t0, 3


la
$t1, nums


addu
$a0, $t0, $t1

#



display that number suffix


li
$v0, 4


syscall

#



and display the last part of the input message


li
$v0, 4


la
$a0, last


syscall

#



return


lw
$ra,0($sp)


addi
$sp,$sp,4


jr $ra

Exercise 1: Working with Binary Point

Convert these decimal numbers to decimal normalized floating point form:


12510 =


0.0034310 =


1101.11B =


0.0101B =

Convert these binary point numbers to Base 10:

(Hint: Determine powers of two:  0.1 = 2-1 = 1/21)


0.112=


0.101012=

Convert this decimal fraction to binary for at least 6 digits (or 6 binary places):

(Hint: Multiply fraction by 2: if quotient > 1 binary digit is one.  Repeat)


0.3310=

Normalize the following decimal numbers to the larger of the two exponents, then add them:  

20.5 + 250.25

Now convert the numbers to binary, normalize them, and add them in binary:

Multiply the following two binary numbers:  1.001 x 23 * 1.01 x 22
Then convert the numbers to decimal and check your work.

(Hint:  Multiply the fractions and add exponents)  

Exercise 2:  Working with IEEE-formatted Floats & Doubles

For the following exercise, the following float and double variables were allocated in a MIPS program.  

[0x10010000]
0x41f00000  0x3cf5c28f  0x453b8000  0x40400000

[0x10010010]
0x3e99999a  0x43960000  0x3b449ba6  0xc1f00000

[0x10010020]
0xc3960000  0xc53b8000  0xc0400000  0xbe99999a

[0x10010030]
0xbcf5c28f  0xbb449ba6    d=0x00000000  0x403e0000

[0x10010040]
d=0x00000000  0x4072c000  d=0xbc6a7efa  0x3f689374
[0x10010050]
d=0x00000000  0x40080000  d=0x33333333  0x3fd33333

[0x10010060]
d=0xeb851eb8  0x3f9eb851  d=0x00000000  0x40a77000 
	
	Float
	-Float
	Double

	0.003


	
	
	

	0.03


	
	
	

	0.3


	
	
	

	3


	
	
	

	30


	
	
	

	300


	
	
	

	3000


	
	
	


Java Lab:

Write a java (or c++) program that uses floats to:

· Print the number 0.333,333,33
· Adds 0.333,333,33 to a total 100,000 times.

· Multiplies 0.333,333,33 x 100,000

Compare the sum and the multiplication result.  Do they match?  Why not?  Which one is correct?  

· Then retest using 10,000,000 (instead of 100,000)

Compare the sum and the multiplication result.  Do they match?  Why not?  Which one is correct?  

· Then retest using doubles.

What does this teach you about using floats or doubles and summing?  How can this error be avoided?
For hackers only:  How is zero stored in floating point notation?


