PAGE
9
Assembly: Logic

CS 245 Assembly Language Programming

Assembly Programming: Implementing Logic

Text: Computer Organization and Design, 4th Ed., D A Patterson, J L Hennessy

Section 2.14 and Appendix A.9.

Objectives: The Student shall be able to:

· Program assembly language to add, subtract, multiply and divide integers.

· Program branches and loops.

· Program I/O using syscalls.
· Program logical instructions to shift and alter bits, particularly SHIFT, AND, and OR.

· Describe the primary uses of the zero, t, a, v, s, and r registers.

· Use MARS to load, reload, clear, run, step, clear, breakpoint, print, and set value commands.

· Debug with MARS by reading registers, data section, instructions, and addresses.

Class Time:

Lecture on Assembly

1 hour

Program example

1 hour

2 Labs

2 hours

Total

4 hours

Integer Arithmetic
Integer Arithmetic instructions include:

add
$s1, $s2, $s3

$s1 = $s2 + $s3
// Add

sub
$s1, $s2, $s3

$s1 = $s2 - $s3
// Subtract

Immediates: The above arithmetic instructions only operate on registers ($sn). The Add Immediate can add a constant of halfword size:

addi
$s1, $s2, 100

$s1 = $s2 + 100
// Add Immediate

· Do an increment:

addi
$s1, $s1, 1

$s1++;

addi
$s1, $s1, -1

$s1--;

Multiply and Divide instructions put results in other registers:

· Multiply: If you know operation will not overflow, use:

mul
$s1,$s1,$s2

s1=s1 * s2Multiply puts the low-order 32 bits of the result in $lo and high-order 32 bits in $hi register

mult
$s1,$s2

$lohi = $s1 * $s2
// Multiply

· Divide puts the quotient in register ‘lo’ and the remainder in register ‘hi’

div
$s1, $s2 # $lo = $s1 / $s2 // Divide

mflo
$s3

$s3 = $lo

 div
$s1, $s2 # $hi = $s1 % $s2 // Modulo

mfhi
$s3

$s3 = $hi

· Multiply two registers and add result to a third register:

madd
$s1, $s2

$lohi = $lohi + $s1 * $s2 // Multiply & Add

Complex sequences are composed of multiple assembly language commands:

#

f = (g + h) – (i+j)

add
$t0, $s1,$s2

$t0 = g + h

add
$t1,$s3,$s4

$t1 = i + j

sub
$s5,$t0,$t1

f = $t0 - $t1

Review: Loading and Storing to/from Registers

To get data INTO the registers from memory, Load instructions are used. After the arithmetic it is important to store the result back to memory using the Store instruction. Load instructions include:
· To load a constant into a register:

li
$s1, 5

$s1 = 5;

// Load Immediate
· To load a register from another register:

move
$s1,$s2

$s1 = $s2

// Move

· To load the contents of a memory location into a register:

lb
$s1, char

$s1 = char[0];
// Load Byte

lh
$s1, index

$s1 = index;

// Load Halfword

lw
$s1, warray

$s1 = warray[0];
// Load Word
· To load memory contents in unsigned mode (no negative values) use:

lbu
$s1, char

$s1 = char[0];
// Load Byte Unsigned

lhu
$s1, index

$s1 = index;

// Load Halfword Unsigned

lwu
$s1, warray

$s1 = warray[0];
// Load Word Unsigned

Loops

GoTos are back IN!! Loops require a label and a conditional branch.
Unconditional loop:

Label1:

do (forever) {

…

…

b
Label1

}

Until Loop Example:

Label2:

do {

…

#
…

bne
$s1,$s2,Label2
} while (index != size);

While Loop Example:

Label3:

while (index != 0) {

beq
$s1,$0,Label4

…

#
…

b
Label3

}

Label4:

Conditional Branches include:
do { ….
· Branch on Equal

} while ($s1==$s2);

beq
$s1,$s2,Label2
if ($s1==$s2) goto Label2

· Branch on Not Equal

} while ($s1!=$s2);

bne
$s1,$s2,Label2
if ($s1!=$s2) goto Label2

· Branch on Greater Than or Equal to Zero
} while ($s1>=0);

bgez
$s1,Label2

if ($s1 >=0) goto Label2

· Branch on Greater Than Zero
} while ($s1>0);

bgtz
$s1,Label2

if ($s1 > 0) goto Label2

· Branch on Less Than Zero

bltz
$s1,Label3

if ($s1<0) goto Label3

· Branch on Less Than or Equal To Zero

blez
$s1,Label3

if ($s1<=0) goto Label3

· Comparing two registers:

bge
$s1,$s2,Label4
if ($s1>=$s2) goto Label4

ble
$s1,$s2,Label4
if ($s1<=$s2) goto Label4

bgt
$s1,$s2,Label4
if ($s1>$s2) goto Label4

blt
$s1,$s2,Label4
if ($s<$s2) goto Label4
Defining Constants:

The assembler does automatic translations for you into constant values. To use:

· Specify at top of file your declarations:

lf=0x0a

linefeed = 0x0a

· Constant definitions make assembly code more readable.
Printing Data

Printing data involves calling a function. The calling parameters for the print function include (and use these registers):
· $a0: Thing to be printed

· $v0: Mode: Set to one of:
· 1=Print Integer: Pass value to print in $a0: syscall(a0=contents,v0=1)
· 2=Print Float

· 3=Print Double

· 4=Print Null-terminated string: Pass address in $a0: syscall(a0=address,v0=4)

Example:
syscall.print ($v0=string=4, $a0=HeadingAddress);

li $v0,4

System.IO.Mode = PrintString

 la $a0,head

System.IO.Value = Heading

 syscall

System.IO($v0=Mode, $a0=Value)
Reading Input

To read from the console, a function call using ‘syscall’ is performed

Read Numbers

· Calling parameter includes:

$v0: System call code

5: Read Integer. Returns integer in $v0: $v0=syscall($v0=5)

6: Read Float. Returns float in $f0

7: Read Double. Returns double in $f0

Example:

li
$v0, 5

System.IO.Mode = Read_Integer

syscall

$v0 = System.IO($v0=System.IO.Mode)
Read Strings

· Calling Parameters include: (syscall($v0=8,$a0=address,$a1=bufsize))

$a0: Address of buffer

$a1: Max size of buffer – read until null or max length

$v0: System call code = 8

· Returns string in buffer up to the endline character or buffer filled.

buffer: .asciiz “ “ # length of 20

syscall.read_buffer($a0=BufAddr, $a1=size, $v0=ReadStrType)

la $a0, buffer

System.IO.Value = BufferAddress

li $a1, 20

System.IO.Size = Size of buffer

li $v0,8

System.IO.Mode = Read String

syscall

System.IO($a0=Value,$a1=Size,$v0=Mode)
Logical Operations

These logical operations are shown on bytes. However, they actually operate on words instead.

Shift Left Logical:

#
$s3 = $s3 << 2

Shift left and right. Bits are moved in the register. Fill bits are zeroes.

Before:

$s3
=
01101001

Instruction:
sll $s3,$s3,2

After

$s3
=
10100100

Shift Right Logical:

#
$s3 = $s3 >> 4

Before:

$s3
=
01101001

Instruction
srl $s3,$s3,4

After

$s3
=
00000110

Uses include:

· Fast multiply or divide by 2N
· Moving nibbles or parts of bytes to a specific location in a word.

And/And Immediate

And:

#
$s3 = $s3 & $s1

Before:

$s1
=
00001111

$s3
=
01011010

Instruction
and $s3,$s3,$s1

After

$s3
=
00001010

And Immediate:

Instruction
andi $s3,$s3,0xffff
#
$s3 = $s3 & 0xffff

Uses: Extract a part of a word

Or Immediate:

#
$s3 = $s3 | 128

Before

$s3
=
00000111

Instruction
ori
$s3,$s3,128

After

$s3
=
10000111

Or
Instruction
or
$s3,$s3,$s1
#
$s3 = $s3 | 0x80

Uses: Set a bit flag or add a nibble (safer than an add for formatting)

Rotate Left/Rotate Right

No C/Java equivalence

Before:

$s3
=
01101001

$t0
=
4

Instruction:
rol $s3,$s3,$t0

equivalent here to ror

After

$s3
=
10010110

Negate:

#
$s3 = - $s1

Before

$s1
=
2510

Instruction
neg
$s3,$s1

After

$s3
=
-2510

Not:

#
$s3 = !$s1

Before

$s1
=
00000111

Instruction
not
$s3,$s1

After

$s3
=
11111000

Nor:

#
$s3 = ~ ($s3 | $s1)

Before:

$s1
=
00001111

$s3
=
01011010

Instruction
nor $s3,$s3,$s1

(Or)

$s3
=
01011111

After

$s3
=
10100000

Xor:

1: If both bits are 0 or 1; 0: If either bit is 1

Before:

$s1
=
00001111

$s3
=
01011010

Instruction
xor $s3,$s3,$s1

After

$s3
=
01010101

##

This program prints an ascii table

#

The call to syscall has the following parameters:

$a0: thing to be printed

$v0: Mode

1=integer

4=null-terminated string

Register Convention:

$s1 = index

$s2 = endloop condition: 256

##

 .data

head: .asciiz "Ascii Table\n"

char: .byte 0,10,0

 .text

 .globl main

main:

ASC00:

print_string (heading);

 li
$v0,4

 la
$a0,head

 syscall

index = 0;

 li
$s1,0

do {

 li
$s2,256

ASC10:

print_integer(index);

 li
$v0,1

 move
$a0,$s1
 syscall

print_string (byte);

 li
$v0,4

 la
$a0,char

 syscall

index++;

 addi
$s1,$s1,1

byte++;

 lb
$t0,char

 addi
$t0,$t0,1

 sb
$t0,char

} (while index!=256)

 bne
$s1,$s2,ASC10

return

 jr
$ra
Execute through the program on the black board.

Discussion: Acting compiler. Which assembly instructions occur for each high-level language line of code?

Register conventions:

Registers in bold are the registers we have worked with so far:

	Register names
	Register Values
	Register Use

	$zero
	0
	Constantly 0

	$at
	1
	Assembler Temporary

	$v0-$v1
	2-3
	Values for function results

	$a0-$a3
	4-7
	Arguments to functions

	$t0-$t7

$t8-$t9
	8-15

24-25
	Temporary use – non-variable

	$s0-$s7
	16-23
	Saved temporaries or variables

	$k0-$k1
	26-27
	Reserved for OS kernel

	$gp
	28
	Global Pointer

	$sp
	29
	Stack Pointer

	$fp
	30
	Frame Pointer

	$ra
	31
	Return Address

(Where to return after a function call)

Additional Registers (transparent to assembly language programmer) include:

· Program Counter (PC): Address of next instruction to execute.

· Instruction Register (IR): Holds the instruction currently executing

Achieving Program Speed:

· Load Instructions: Can only load from memory

· Arithmetic Instructions: Load from registers, operate, store to register(s)

· Load Immediate/Add Immediate: The constant is part of the instruction and exists in the Instruction Register – it got loaded with the instruction, preventing a load from memory

How do we achieve speed? By programming the fastest and minimal number of instructions…

Lab 2
Copy the lab2.s file from my web page to your directory.

Start Mars_4_1 on a windows machine.

File -> Open

lab2.s

The MARS display should come up with the lab2.s loaded

You can see some of the icons on top. Look through the icons for SAVE and ASSEMBLE. We want to Assemble the program, so click the icon:

ASSEMBLE

We have just switched over from the EDIT to the EXECUTE tab.

Working with the EXECUTE Screen

At the top is the Text Segment, containing our instructions.

In the middle is the Data Segment, showing us what is in MEMORY.

At the bottom is the Output, showing us what our program is printing.

To the right are the Registers.

Q1. What is the assembled hexadecimal machine code for a ‘bne’ instruction? Notice there are two hexadecimal values associated with the bne instruction. One is the instruction, and the other is the address of the instruction. Which is which?
a) bne instruction address=

b) bne instruction contents (machine code value)=
Find the icon to Step through the program.

Q2) Which icon is Run versus Step?

Execution

Step one instruction at a time through the two ‘la’ instructions. You should see that the registers are getting initialized.
Step through the program to answer the remaining questions.

You should observe that the Output array (OutArr) is getting populated in the Data Section as you continue stepping through the code.
Q3. What is the beginning address of OutArr as loaded in the register and seen in memory?

You can see the changing values of the $t and $s registers while you are stepping through the code.

Q4. What value(s) does $t5 and $s3 registers contain?
Q5. Are the registers displayed in hexadecimal or decimal by default? (Hint: Look at registers $s3 and $s4. What should be in them?) There are checkboxes where you can set different modes. Describe how you can change to other modes.
Modifying Assembly Code

When you are done copying five values from the Input array to the Output array, modify the original code using MARS. Change the loop to run 10 times instead of 5 times. Test to make sure it works.

Q6. What assembly instruction(s) did you add or change?

Instead of working with words, why don’t we load and store the data in bytes and load/store (or move) the data one byte at a time, instead of a word at time. First, you will want to make sure that the two arrays are byte arrays instead of word arrays. Second, you will need to load and store bytes instead of words. Third, look at memory to debug your code. Refer to my notes to use the correct instructions. Call me over when you think you have this working (or if you are stuck).
Q7. What instruction(s) did you change?

Q8. How does the Data Section look different compared to when you used words?
Lab 3
Copy the lab3.asm file from my web page to your directory.

Start Mars_4_1 on a windows machine.

File -> Open

lab3.asm
The MARS display should come up with the lab3.asm loaded

You can see some of the icons on top. Look through the icons for SAVE and ASSEMBLE. We want to Assemble the program, so click the icon:

ASSEMBLE

We have just switched over from the EDIT to the EXECUTE tab.

You should see all of your registers in the right section, including PC, hi, lo, and index registers: $tn, $vn, $an, $sn, …
At the top you will see the Text Segment showing instructions and Data Segment showing data in hexadecimal.

Q1. At what hexadecimal address in memory does the data begin?

Step one instruction at a time using the >1 icon. Please stop at the first Syscall instruction). This syscall will do a print string, using $a0 and $v0 as arguments.
 Step (one instruction at a time to the first Syscall instruction)

Q2. What should be the value of the $a0 and $v0 register, considering we are doing a Print Syscall? What are the values of these registers? If the registers are displayed in hexadecimal, print ‘0x’ before the value.

 Observed hex value: Translation or meaning of value:

 $a0= $a0=

 $v0= $v0=

Q3. Is what is in $a0 currently a memory address or a value from memory? Look at the Data Section (= memory) to learn its address and contents. Circle the one in $a0.
 Address=

Memory contents=
Q4. Perform one more Step command. You should see a Console at the bottom left corner displaying the output.

Displayed on Console screen:
Then adjust the speed (top right side) to 20 to 30 instructions per second, and press the go (>) icon. (You can adjust the speed as it runs.)

The ASCII table should print. Lets run it again. First we have to reset the program.
 Run -> Reset <or> << icon
This allows you to rerun the program from the start, clearing the Program Counter.
Next we want to use the Breakpoint command to set a Breakpoint at each ‘syscall’ instruction. There are checkboxes to the far left of the screen in the column: Bkpt (or Breakpoint). Set each of the breakpoints for each syscall instruction.

Then, press ‘Run’ and answer the following questions:

Q5. At the first breakpoint, $V0 is 4 (print ASCII text) and $a0 is the address where the text string begins. Look in memory to determine what is stored there. Show what is stored in two formats: hexadecimal and ASCII, up until the ‘zero termination’.

Hexadecimal:

ASCII:

Then step one more instruction (do the syscall). What prints:

Printed on console:

Q6. Run to the next syscall breakpoint: >. Here we are printing a numeric value in a register. Print the values and what is logically supposed to be in them.
 Observed: Translation or meaning of value:

 $a0= $a0=

 $v0= $v0=

Now eliminate the two first breakpoints by clearing their checkmarks. Retain the last breakpoint on the third ‘syscall’. Run until you reach where the number 49 has printed.

Step and observe the registers as numbers and their values print.

Q7. Does the simulator print integers to the console (Run I/O tab) in decimal or hexadecimal? (Complete the following any way you would like.)

Decimal value=

Hexadecimal value=

ASCII=

Then complete the following by observing registers and printed values:

ASCII =C

Decimal=

Hexadecimal=

ASCII=b

Decimal=

Hexadecimal=

Q8. Finally, modify lab3.s to add three spaces between the index and the character value.

What code did you add?
Q9. Register $t3 is not used in this program. Click on the register and change its value to 25. Can you enter a value in both decimal and hexadecimal? How?

Notice that you can do the same to memory. This could be useful in debugging.
Q10. Optional – to achieve Hacker Status: There is a bug with the program. Notice that indexes 0 and 1 print together. Why?
