Intro to Assembly Language

CS 245 Assembly Language Programming

Intro to Assembly Language

Text: Computer Organization and Design, 4th Ed., D A Patterson, J L Hennessy
Section 2-2.3, 2.9

Objectives: The Student shall be able to:

· Explain the purpose of memory and registers

· Define the number of bits in a nibble, byte, word, and doubleword.

· Allocate memory: .word, .byte, .asciiz, .space
· Be able to read memory and registers within the MARS (MIPS Assembler and Runtime Simulator)

· Program the load and store instructions: lw, lb, li, sw, sb, la
· Interpret an ASCII table, converting between hexadecimal and ASCII.

· Define big-endian and little-endian and describe problems that could occur when processors use different techniques.

Class Time:

Data, Registers, Loads, Stores

1 hour

Intro to MARS

2 hours

Reading ASCII and la

0.5 hours

Big-Endian Exercise

0.5 hours

 Total 4 hours

Assembly Language

Assembly Language works with Registers

Each register is 32 bits (in MIPS simulator)

Only the Arithmetic Logic Unit can do arithmetic.

· To do any arithmetic, the input and output to ALU must be in registers.

· Why? ALUs and Registers are fast. Memory is sloooooooow.

· So try to keep all your data in Registers!!!!!

Memory Allocation

	Byte=8 bits
	Byte=8 bits
	Byte=8 bits
	Byte=8 bits
	Byte=8 bits
	Byte=8 bits
	Byte=8 bits
	Byte=8 bits

	Halfword = 16 bits
	Halfword = 16 bits
	Halfword = 16 bits
	Halfword = 16 bits

	Word = 32 bits
	Word = 32 bits

	Doubleword = 64 bits

In MARS/MIPS:
· Registers are each 1 word large = 32 bits
· Memory addresses refer to byte addresses

· Many computers now have a word size of 64 bits, but we will assume 32 bits.

· A Nibble is half of a Byte (Bite): 4 bits

· A Double Word is 2x the size of a Word: 64 bits.

· A Quad Word is 4x the size of a Word: 128 bits.

Assembly Language Instructions
Comments:

This is a comment

Comments are useful for describe what your program is trying to do

add $s1,$s2,$s3
Comments can be used to describe instructions
Declaring Data in Memory

Declare Data Section: First declare the data section using the .data command.

 .data

Declare Bytes: We can declare an array of bytes of integers and assign initial values.

Each byte is 8 bits

The name of the array is ‘char’:

char:
.byte 0,10,20

3-byte array with initial values of 0, 10, 20 (decimal)
Declare Words or Halfwords: Declare and define single instances or arrays

Words are 32 bits; Halfwords are 16 bits

index:
 .half 1

‘index’ is a halfword with value 1

warray: .word 25, 32, 96
‘warray’ is an int array with values 25,32,96
Allocating larger chunks of memory: Declare space but do not initialize memory

array:
.space
50
Allocate 50 bytes to ‘array’. No initial values.
Using ASCII Characters

Declaring Strings: We can declare a string in ASCII (= Unicode-8 or UTF-8).

The string is null-terminated: .asciiz appends a byte with a 0 in it.

The print routine prints byte after byte until it encounters the binary 0.

The name of the string is ‘head’:

head:
.asciiz
"Welcome to Assembly Language\n"
Newline character = “\n”

Reading an ASCII Table
Alphanumerics are converted to binary for storage.

Use Reference Card (on website) to look up ASCII conversions.

	Ascii
	H
	e
	l
	l
	o
	
	1
	2
	3

	Base16
	48
	65
	6c
	6c
	6f
	20
	31
	32
	33

Now you try:

	Ascii
	G
	o
	o
	d
	-
	b
	y
	e
	!

	Base16
	
	
	
	
	
	
	
	
	

Loading and Storing to/from Registers

To get data INTO the registers from memory, Load instructions are used. After the arithmetic it is important to store the result back to memory using the Store instruction. Load instructions include:

To load a constant into a register:

li
$s1, 5

$s1 = 5;

// Load Immediate

To load the contents of a location in memory into a register:

lb
$s1, char

$s1 = char[0];
// Load Byte

lh
$s1, index

$s1 = index;

// Load Halfword

lw
$s1, warray

$s1 = warray[0];
// Load Word
The above assume signed integers: both + and – are supported

lbu
$s1,char

char must be positive (‘unsigned’)

lwu
$s1,warray

word must be unsigned (+)
To load an integer from an array[offset] (to work with a record structure or array for example), use a constant offset. Below, head is an array of words (4 bytes each)

lw
$s1, warray+4

$s1 = warray[1]

lb
$s2, char+1

$s2 = char[1]
Store Instructions: To store a register’s contents to memory, use one of the following commands:

sb
$s1, char

char[0] = $s1;
// Store Byte

sh
$s1, index

index = $s1;

// Store Halfword

sw
$s1, warray

warray[0] = $s1
// Store Word
Now we put multiple instructions together:

lw
$s1, warray

$s1 = warray[0];

li
$s2,4

$s2=4

add
$s3, $s1, $s2

$s3 = $s1 + $s2

sw
$s3, solution

Assembly Language Program

Here is an example program.

##

Program to Load Registers
Author: Dr Susan Lincke
##

.data

In .data we allocate memory

count: .byte
3,4,5

Array of 3 bytes with values: 3, 4, 5

waray:
.word
6,7,8

Array of 3 words with values: 6, 7, 8

result:
.space
4

Allocate 4 bytes, but do not initialize values
head:
.asciiz
 "Loading Registers\n" #

.text

In .text we write our program

.globl
main

Define main as a global label so OS can find it
main:

result = warray[0] + count[0]

lw
$s1,warray
Reg[s1] = warray[0]

lb
$s2,count
Reg[s2] = count[0]

add
$s3,$s1,$s2
Reg[s3] = Reg[s1]+Reg[s2]

sw
$s3,result
result = Reg[s3]
Notice:

Align 4 columns: label (0), instruction (8), operands (16), comments
My comments refer to Registers here, but I prefer logic comments: # result = warray[0]+count[0]
Indexed Addresses

[image: image1]
Consider in Java:

Person Ann = new Person(“Ann”);

int height = Ann.height;

int age = Ann.age;

To implement this in Assembly we need Ann ($reg) and an offset (age or getAge()):

la
$s3,Ann

$s3 = Ann

lb
$t1,24($s3)

$t1=age = Ann.age = $s3+24;

lb
$t2,25($s3)

$t2 = height = Ann.height

Using load address ‘la’ and a pointer

To load the address of a memory location into a register (of a string for example for printing):

la
$s1, head

$s1 = Address[head]; // Load Address

To load an integer from an array[offset] (to work with a record structure or array for example) load the register with the address of the array and use a constant offset.

lw
$t1, 100($s1)

$s3 = Memory[$s1 + 100] = head[100]
To load a memory location and offset it with a variable index, put multiple instructions together:

la
$s2, warray

$s1 = Address[warray];

lw
$t4, 0($s2)

$t4 = warray[0] # = warray+0

lw
$t5,4($s2)

$t5 = warray[1] # = warray+4
Store Instructions: To store a register’s contents to indexed memory, use one of the following commands:

sw
$t4, 8($s2)

warray[2] = $t4;
// Store Word

sb
$s1, 30($s4)

char_array[30]=$s1
// Store Byte
Forensic Exercise: ASCII in Memory
A forensic investigator is investigating the poisoning of an ethnic college student, and is looking for a motive: gang-related? The suspect is John Torrens, and the investigator has a forensic copy of Torrens’ disk. Torrens used a rare version of Unix, with its own web tools. The tool appears to keep a history of web accesses, but the history has been manually cleared. The investigator has found the location on disk where the history is normally maintained, and he is interested in searching through the deleted entries to determine what type of person Torrens is. Can you look through the memory with an ASCII table to determine which web links Torrens recently visited?
Mem. Address
 Memory Contents
[10010000] 00000005 2e777777 61797261 616e2d6e

[10010010] 6e6f6974 726f2e73 77770067 75622e77

[10010020] 65686379 6163696d 6f632e6c 72612f6d

[10010030] 696e6573 74682e63 00006c6d 00000000

[10010040]..[1003ffff] 00000000
a) Links Torrens has recently visited:

b) What assembly data instructions could be used to create this ASCII text in memory?

Lab 1: Converting between Big-Endian and Little-Endian
Assume we use the following instructions to create a string:

.data

head:
.asciiz “Ascii Table\n”

char:
.byte
0,10,0

The Data section will look as follows:

DATA

[0x10010000] 0x69637341 0x61542069 0x0a656c62 0x000a0000

Q1. With your knowledge of ASCII, interpret the ASCII characters in the data section above.

Machines are classified as little endian and big endian, depending on where the low-order or first bit is.

[image: image2]
MIPS operates in Big-Endian or Little Endian mode depending on the mode of the underlying machine.

Q2. From the data observed above, what mode do the Linux machines in the lab operate in?

The IP Protocol is transmitted in Big-Endian mode. For characters this is not a problem since bytes are transmitted starting with 0. However, picture an integer in both modes. In this case the Big-Endian would transmit the data as 0x00000256 and the Little-Endian machine would transmit it as 0x56020000. This is also a problem with files on disk.

[image: image3]
Q3. Write an assembly algorithm that will convert an integer from Little-Endian to Big-Endian mode. Hint: First, create an output buffer (outBuf) to store the rearranged data to. Swap byte inbuf+0 to outbuf+3, etc:
inbuf:
 .byte
0,1,2,3,4,5,6,7

Will load as 3,2,1,0, 7,6,5,4
outbuf: .byte
0,0,0,0,0,0,0,0

This should be 0,1,2,3,4,5,6,7 when you are done

Let’s do this in the lab!!!:

Copy the lab1.s file from my web page to your directory.

Start Mars_4_1 on a Windows or Linux machine. (Linux = Application->Programming->Mars)

File -> Open

lab1.s

The MARS display should come up with the lab1.s loaded

You can see some of the icons on top. Look through the icons for SAVE and ASSEMBLE. We want to Assemble the program, so click the icon:

ASSEMBLE

We have just switched over from the EDIT to the EXECUTE tab.

Working with the EXECUTE Screen

At the top is the Text Segment, containing our ASSEMBLY INSTRUCTIONS.

In the middle is the Data Segment, showing us what is in MEMORY.

At the bottom is the Output, showing us what our program is printing.

To the right are the REGISTERS.

Download my lab1.asm file from my web page: www.cs.uwp.edu/Classes/Cs245.

Start Mars.

File->open (enter lab1.asm from the appropriate directory)

Run->assemble (or select the ‘tool’ icon on the icon panel)

Select the Execute folder.
The code is top left; the registers on the right; memory is bottom left.
Look for inbuf in memory. It should appear in reverse order,

since we are working on a little-endian machine: 03020100 …. bytes.

List the beginning address of the following arrays in memory:

 inbuf:

outbuf:

The goal of your program is to have the data in outbuf to be 00010203….

as if you are sending to a big-endian machine.) To accomplish this, we will use…
Technique 1: Use lb, sb to convert the endian type, with any $s or $t register. For example:

 lb
$t1, inbuf+3

outbuf[0] = inbuf[3]

 sb
$t1,outbuf+0

Select Run->Step or F7 or the ‘>1’ icon to step through the current program. Notice that the lb (load byte) results in the register (right column) getting loaded. The sb (store byte) results in the memory being changed. When the program is over, notice the contents of the ‘output’ data in memory.

Is the byte move correct? (No) Correct it! First you have to find the bug. You may want to debug by running it again. You may use the << arrow icon to go back to start execution again. Step again, but look at how the registers get loaded, and how they get stored. What is not happening correctly?
Once you find the mistake you can go back to the edit window, make the change, assemble it again (tool icon), and step through it again. Then you can extend the program to move each byte of inbuf to outbuf. What is your final code? Be sure that your comments are at a high level (java-like), as shown above. When you are done, show me your program.
Technique 2: Now we will use an index register and offsets to accomplish the same thing. First load the registers $s0 and $s1 with the addresses of inbuf and outbuf, respectfully. As you execute the la (load address) instructions, look at the values in these registers – they contain the address of the two buffers. Now we will use offsets from these addresses in the lb and sb instructions to move data around. Here is sample code, which also exists in the header of the program:

la
$s0, inbuf

s0 = inbuf_addr

la
$s1, outbuf

s1 = outbuf_addr

lb
$t1, 3($s0)

temp = value(inbuf_addr+3)

sb
$t1, 0($s1)

value(outbuf_addr+0) = temp
What values are in $s0 and $s1 at the first lb instruction (i.e., after the la instructions)?

$s0=

$s1=

Program and test your code. Write your code below, including appropriate high-level comments. Turn this lab in to me with your name(s) on it.
For hackers only: If you have enough time, sum the total of all numbers by adding each value into another register: $s2. You will use this one additional add instruction (for example):

add
$s2,$s2,$t1
s2 = s2+t1

What is the final sum in $s2?
Reg 1�
�

Reg 2�
�

Reg 3�
�

Reg 4�
�

CPU or Processor�
�

Memory

Index: 255

Total: 355

Array: 2, 4, 8, 10, 20

Instructions …�
�

Arithmetic Logic Unit (ALU)�
�

Bus�
�

lw, sw

A

14

1E

28

32

warray:

warray: 	.word	10,20,30,40,50

	la	$s1, warray	s1=

	

	lw	$s7, warray	s7=

	lw	$s7, warray+4	s7=

	

	lw	$s2, 4($s1)	s2=

1001000

A

14

14

0 1 2 3

3 2 1 0

Big-Endian

Little Endian

00000256

00000256

Big-Endian

Little Endian

 0 1 2 3 <-Byte order->

 3 2 1 0

