Assembly: Addressing Modes

CS 245 Assembly Language Programming

Addressing Modes, Etc.

Text: Computer Organization and Design, 4th Ed., D A Patterson, J L Hennessy
Section 2.10, 2.14

Objectives: The Student shall be able to:

· Describe and work with PC-relative addressing, absolute addressing, and pseudo-absolute addressing as used in MIPS.

· Define pseudo-instruction and describe how they are used.

· Program use of a pointer or index when working with arrays.

Class Time:

Indexing and addressing

1 hour

Exercise: Arrays vs Indexes

1 hour

 Total 2 hours

Instruction Addressing Modes

PC = Program Counter = Register containing address of the next-to-execute instruction

PC-Relative Addressing

Most conditional and looping code branch very close to the current location

NewAddress = PC + Offset

Branch instructions include an Offset (16 bits) that help specify an address:

PC = PC + Offset*4

Instructions always begin on a word (not byte) boundary, so Offset is multiplied by 4.

Since PC is 16 bits large, GoToAddress can be 215 words in either direction of the current instruction.

Absolute Addressing

Procedural Calls may refer to an address far from the PC.

Replace the PC with a new address

PC = NewAddress

Often, Assembly Language programs to Jump use more than 1 word:

· First byte/halfword/word includes instruction opcode Jump

· Second word includes new address to load

Absolute Addressing in MIPS: To load all 32 bits and jump to an address in a register:

la
$t0,Proc1
->
lui
load unsigned immediate

->
ori
or unsigned immediate

jr
$t0

Pseudo-Direct Addressing: Modification of the Absolute Addressing scheme

MIPS Jump instructions include an Offset (26 bits) that help specify an address.

Offset = Offset * 4

// Get word boundary

PC = PC & 0xf0000000
// Mask off lower 28 bits

PC = PC | Offset

// Or in desired offset

· Notice that the called procedure must have the same top four bits as the calling procedure – or be within 64 million instructions

· Single instruction implementation:

jal
Fact

Other Addressing Modes

Immediate Addressing: Work with a 16-bit constant

Instructions to work with lower-order 16 bits: li, addi, …
To change the upper 4 bits (or upper 16 bits):

Load Upper Immediate: Clears lower 16 bits, loads upper 16 bits

lui
$t0, 255

Example:

lui
$t0,0x0101

Load upper, clear lower

ori
$t0, $t0, 0x1010

Or immediate

$t0=

	0x0101
	0x1010

What other ways can we fill all of $t0?

Register Addressing: Work with registers:

Instruction specifies a register – the register is used unmodified

Example instructions: add, mult, div, …

Base addressing: An offset modifies an index register

Load/Store
Memory(Register + Offset)

Example:

lw
$t0, 8($sp)

$t0 = memory ($sp+8)

Base registers may include:

· User-Defined Pointer: $S registers can be loaded with an address of a structure or table to be indexed into.

· Stack Pointer: Used in procedure calls

· Global Pointer: Points to data section can be used to address dynamically allocated memory

Pseudo-instructions:

Some ‘instructions’ are actually turned into other or multiple instructions by the assembler. This simplifies programming in assembly:

blt $s3,$s4,lab
(
slt
$1,$s3,$s4

bne
$1, $0, -12

move $t1,$t0
(
addu
$9,$0,$8

Set on Less Than

if ($s3<$s4) $t0=1; else $t0=0;

slt
$t0, $s3, $s4

$t0 = $s3 < $s4

Set on Less Than Immediate

slti
$t0,$s2,10

$t0 = $s2 < 10

Instructions that actually do exist include:

bne

beq

slt

slti

From these instructions, the assembler can generate a number of instructions (sge, sgt, slt, sle, bgt, bge, ble, …) how does the assembler generate these instructions? (Hint: rearranges registers…)

bgt

bge

ble

Arrays vs. Pointers

###############################

Clears an array using array indexes

Calling Sequence=

#
$a0 = address of array

#
$a1 = size of array in bytes
Register Convention=

#
$t0 = i

#
$t2 = array[i]

###############################

#

clear1(int array[], int size)

clear1:

#

{

#

int i = 0;

move
$t0,$zero

#

do {

clear1c:

#

array[i++] = 0;

add
$t2,$a0,$t0

sb
$zero, 0($t2)

addi
$t0, $t0,1

#

} while (i<size)

slt
$t3,$t0,$a1

bne
$t3,$zero,clear1c

#

return

jr
$ra

#

}

###############################

Clears an array using a pointer

Calling Sequence=

#
$a0 = address of array

#
$a1 = size of array in bytes

Register Convention=

#
$t0 = p = ptr inside array

#
$t2 = &array[size]

###############################

#

clear2((int* array, int size)

clear2:

#

{

#

int* p = &array[0];

move
$t0, $a0

#

do {

add
$t2,$a0,$a1

clear2c:

#

*p++ = 0;

sb
$zero,0($t0)

addi
$t0,$t0,1

#

} while (p<&array[size])

slt
$t3,$t0,$t2

bne
$t3,$zero,clear2c

#

return

jr
$ra

#

}

Exercise:

1) Which function should finish earlier – using pointers or array indexes? Count up the number of instructions executed for each.
2) The clear functions work with bytes. Change them to work with words.

Exercise on Addressing Modes

1. The Fact procedure has a bne instruction. What is the offset in the machine code for that instruction (assuming the lower 16 bits are the offset)? What instruction is Offset instructions away from the bne instruction? Is the addressing PC-relative?

Offset=

Instruction=

2. There are two ‘jal Fact’ calls in the code. What is the value of each jal instruction in machine code (hex)? What is the offset (assuming the opcode is top 6 bits and the remaining bits are the offset?)

1st jal instruction=

2nd jal instruction=

1st jal offset=

2nd jal offset=

2a. Now multiply the offset by four since jal instructions address words (or instructions) and not bytes. (Multiply by 4 = Shift left 2.) Show your work below.

Resulting Offset=

3. Look at the address of the first instruction in Fact. What is its address in hexadecimal? Does it match your answer to 2a? (It should.)

Fact Address=

4. Finally, what is the value of the Global Pointer ($gp) register? Where does that register point in memory?

$gp=

Points to=

5. For hackers only: What is happening in the following instruction?

[0x00400038]
0x3c041001 lui $4, 4097 [prompt] ; 26: la
$a0,prompt

