CS 245 Fall 2016
Assignment 3 – A Partial Interpreter: Using Procedures to Parse and Execute Assembly Instructions
For all assignments, be sure to:

· INCLUDE REGISTER CONVENTIONS, CALLING SEQUENCE, STACK USAGE.

· Include file comments at the top, listing your name, the name of the program, and briefly describe what the program does.
· Describe the register convention, and calling sequence for procedures.

· Line up instruction parts in columns: 0=labels; 1tab=opcode (instruction mnemonic); 2tabs=operands; 3-4tabs=comments.
· Include pseudo-code comments to the right of your assembly code. Avoid comments that tell me what the assembly does, such as: move 25 to register $s3 – I already know this. Keep your comments to the logic.

Program 3: A Partial Interpreter: Using Procedures to Parse and Execute Assembly Instructions
In the previous assignment, you took an I-formatted instruction stored in memory (i.e., in the data section), and printed its hexadecimal or decimal value for each field in the instruction.

In this assignment you will execute each instruction as you interpret it. Here is sample output:
Example Output

li
$1,7
$1=7

addi
$1,$1,5

$1=12

ori
$2,$1,7

$2=15

andi
$1,$2,3
$1=3

Use of Procedures
Part of this assignment is to use procedures properly. Create procedures to:

· Decode_Instruction(half instruction): Saves off into a Parsed table the opcode, the source register number, the destination register number and the immediate value. These fields can be accessed any time by any routine.

· Print_Reg_Num(int reg_num): Prints a ‘$’ and a register number. Used when printing the instruction.

· Fetch_Source_Register(int reg_num): Fetch the value of the register reg_num from the register file.

· Store_Print_Dest_Reg(int reg_num, int value): Store the calculated value into the register file for register reg_num. Also print the register number with its value.

In main(), you may want to do one big switch-case statement: case of li, addi, ori, andi. In each case, print the instruction and execute the instruction.

The previous program was excessively long. So create procedures to help with the printing. Here are the two procedures, with their MANDATORY calling sequence:

##

Decode_Instruction(short instruction): Saves off into a Parsed table the opcode, the source
register number, the destination register number and the immediate value. These fields can be
accessed any time by any routine.
Calling Sequence:

lw
$a0,instruct
 # Fetch next instruction

#

jal
Decode

Stack Usage: (You specify, minimally include:)

#

Return Address

##

##

Print_Reg_Num(int reg_num): Prints a ‘$’ and a register number. Used when printing the
instruction.
Calling Sequence:

lw
$a0,reg_num
#

jal
PrReg
#

Returns: nothing; Output: The routine prints: $n
#

Stack Usage: (You specify, minimally include:)
#

Return Address

##

##
Fetch_Source_Register(int reg_num): Fetch the value of the register reg_num from the

register file.

Calling Sequence:

#

lw
$a0,reg_num

#

jal
FchPrReg

#

Returns: $v0=Value of register from register file

#

Stack Usage: (You specify)

##
##
Store_Print_Dest_Reg(int reg_num, int value):

Store the calculated value into the register file for register reg_num.

Also print the register number with its value.

Calling Sequence:

#

lw
$a0,reg_num

#

sw
$a0,-4($sp)

#

lw
$a0,value

#

sw
$a0,-8($sp)

#

jal
StPrtReg

#

Prints: (E.g.)
$1=25

#

Returns: Nothing

#

Stack Usage: (Suggested: you may change):
#

8($sp) = reg_num

#

4($sp) = value

#

0($sp) = return_address

##
You will be graded on proper use of procedures, stack and documentation. Be sure to include storage of the return address on the stack, as well as any $s registers you use. Please follow the suggested documentation and be sure to document calling sequence, registers conventions, and stack usage for each procedure. You may copy my documentation and adjust it as necessary.
Submission

Turn this program in as homework3.asm via paper and electronic copy:

$ submit 245 homework3.asm

Grading

Each homework assignment is worth 10 points. Be careful to include all comments and format correctly, as directed in the beginning of this file.
