
CS 245 Fall 2015

Assignment 3 – Using Procedures to Parse an I- or R-formatted Instruction

For all assignments, be sure to:

 INCLUDE REGISTER CONVENTIONS, CALLING SEQUENCE, STACK USAGE.

 Include file comments at the top, listing your name, the name of the program, and briefly

describe what the program does.

 Describe the register convention, and calling sequence for procedures.

 Line up instruction parts in columns: 0=labels; 1tab=opcode (instruction mnemonic);

2tabs=operands; 3-4tabs=comments.

 Include pseudo-code comments to the right of your assembly code. Avoid comments that

tell me what the assembly does, such as: move 25 to register $s3 – I already know this.

Keep your comments to the logic.

Program 3: Using Procedures to Parse an I- or R-Formatted Instruction

In the previous assignment, you took an R-formatted instruction stored in memory (i.e., in the

data section), and printed its hexadecimal or decimal value for each field in the instruction.

In this assignment you will differentiate between an I-format and R-format instruction, because

R-format instructions have opcodes=0. You will then print an instruction either as an I-format or

an R-format instruction, selecting one format from the two formats below:

 Example:

 Instruction: 0x0388000F

 Opcode: 0x0A

 RS: 5

 RT: 6

 RD: 7

 Shift amount: 0

 Function Code: 0x0F

 Instruction: 0x24AB0020

 Opcode: 0xA0

 RS: 10

 RT: 12

 Immediate: 32

(These are not true examples – don’t assume this data is correct.)

Note that the registers, shift amounts and immediates are printed in decimal, while opcode,

function code and instruction are printed in hexadecimal.

To do:

Create two procedures: Print_I_Format and Print_R_Format. In main, determine whether the

instruction is an I-format or R-format, then call (or jal to) the appropriate procedure. From each

of these procedures, you will call separate print procedures as discussed next.

The previous program was excessively long. So create two procedures to help with the printing.

Here are the two procedures, with their MANDATORY calling sequence:

Print_Decimal()

This procedure will print a label and a number: e.g., “RS: 8”

Calling Sequence:

la $a0,Label # PrintDecimal(Label,Value)

lw $a1,Value

jal PrDec

The routine then prints: Label: value

Stack Usage: (You specify)

Print_Hexadecimal()

This procedure will print a label and a base 16 number: e.g., “RS: 0x0024”

Calling Sequence:

la $a0,label # PrintHex(Label,Value)

sw $a0,-4($sp)

lw $a0,value

sw $a0,-8($sp)

jal PrHex

The routine then prints: Label: 0xValue

Stack Usage: (You specify)

You will be graded on proper use of procedures, stack and documentation. Be sure to include

storage of the return address on the stack, as well as any $s registers you use. Be sure to

document calling sequence, registers conventions, and stack usage for each procedure.

Submission
Turn this program in as homework3.asm via paper and electronic copy:

$ submit 245 homework3.asm

Grading
Each homework assignment is worth 10 points. Be careful to include all comments and format

correctly, as directed in the beginning of this file.

