CS 245 Fall 2016
Assignment 2 – Parsing Immediate Object Code
For all assignments, be sure to:

· Include file comments at the top, listing your name, the name of the program, and briefly describe what the program does.
· Describe the register convention, and calling sequence for procedures.

· Line up instruction parts in columns: 0=labels; 1tab=opcode (instruction mnemonic); 2tabs=operands; 3-4tabs=comments.
· Include pseudo-code comments to the right of your assembly code. Avoid comments that tell me what the assembly does, such as: move 25 to register $s3 – I already know this. Keep your comments to the logic.

Program 2: Recognize Immediate Instructions
In this assignment, we will work with a very simple assembly language, with only 4 registers and a few instructions. (This is a very cheap processor!) Devise a program to disassemble and print a set of instructions. Input to the program is hardcoded assembled hexadecimal instructions, put into the .data section of your program. Your output should be in this format (but not necessarily these contents):
Example Output

li
$1,7

addi
$1,$1,5

ori
$2,$1,7

andi
$1,$2,3

We will assume the assembly language instruction format is constructed as follows:

	Opcode: 4 bits

1=li

2=addi

3=ori

4=andi
	Destination Register:

2 bits

Registers 0-3
	Source Register:

2 bits

Registers 0-3
	Immediate: 1 byte

Signed integer

Here are the sample instructions in their binary assembled format:

li
$1,7

// B0001 01 00 00000111 = 0x1407

addi
$1,$1,5

// B0010 01 01 00000101

ori
$2,$1,7

// B0011 10 01 00000111

andi
$1,$2,3

// B0100 01 10 00000011

To accomplish this, you will need to parse the hexadecimal instruction into the four fields, print each instruction including its four fields, and then process the next instruction in a loop. Stop processing instructions when you run into a null instruction. It is ok not to add code to catch errors.

Hints

Write the code comments (java-like) first. Then it will be easy to code the assembly.

You may use a simple subroutine by calling

jal
printReg
call subroutine to print a register

jr
$ra

used at end of subroutine to return to caller

Submission

Turn this program in as homework2.asm via paper and electronic copy:

$ submit 245 homework2.asm
Grading

Each homework assignment is worth 10 points total. Be careful to include all comments and format correctly, as directed in the beginning of this file.
