
CS 245 Fall 2018

Assignment 1A – Ands and Ors

Assignment 1B, 1C – Working with Sprites

For all assignments, be sure to:

 Include file comments at the top, listing your name, the name of the program, and briefly

describe what the program does.

 Line up instruction parts in columns: 0=labels; 1tab=instruction mnemonic;

2tabs=operands; 3-4tabs=comments.

 Include pseudo-code comments to the right of your assembly code. Avoid comments that

tell me what the assembly does, such as: move 25 to register $s3 – I already know this.

Keep your comments to the logic.

Program 1A: AND and OR
For the first program, simply perform the following calculation:

 $T1 = 0xaa AND 0xf0 OR 0x03

 Print your result: “0xaa & 0xf0 | 0x03 = 0x” <N>

Hint: Modify lab1.s to start. You will print your result as a string and an integer. See notes on

Assembly logic for print details.

To print a hexadecimal number, set $v0 to 34 and $a0 to the integer to print.

Example code:

 li $v0,34 # print_hex(v0=34, a0=solution)

 move $a0,$t1

 syscall

For more information of what syscall can do, see

http://courses.missouristate.edu/KenVollmar/MARS/Help/SyscallHelp.html.

Using structured code on the side as comments can help you track what you are doing in your

code. Below are some comments that you can use to act as compiler to get your program

working. You may use as comments the following pseudocode:

temp = 0xaa AND 0xf0

temp = temp OR 0x03

print_string(“0xaa & 0xf0 | 0x03=”

print_hex_value(temp)

Turn this program in as hwk1.asm via paper and electronic copy to Canvas.

Program 1B: Moving the sprite across one word in memory
Write a MIPS assembly program that when run in MARS at 25 instructions/second will display

in the Memory .data segment a “sprite” that moves across one word.

Assuming that you chose a “background” of the hex digit 00 and a “sprite” of the hex digit ee, a

“time lapse” series of snapshots of the Memory segment display would look like the data below:

Time 1: 0x000000ee

Time 2: 0x0000ee00 ee is the

sprite

character

http://courses.missouristate.edu/KenVollmar/MARS/Help/SyscallHelp.html

Time 3: 0x00ee0000

Time 4: 0xee000000

Time 5: 0x00ee0000

Time 6: 0x0000ee00

Time 7: 0x000000ee

Or you can do:

Time 1: 0xee000000

Time 2: 0x00ee0000

Time 3: 0x0000ee00

Time 4: 0x000000ee

Time 5: 0x0000ee00

Time 6: 0x00ee0000

Time 7: 0xee000000

Important: set the MARS slider bar to execute at a slower speed. Omitting this step will run at

full speed and no output will be apparent. You may choose the hex digits used for the “sprite”

– select two hex digits that have as much contrast as possible for best visibility.

Since assembly code is not self-explanatory (!), your comments are vital for good program

clarity. Here are some sample comments you can use. You can act like a compiler and add

assembly code to get the program working:

index = 0;

memory.byte[index] = sprite

do {

index++

memory.word = memory.word >> 1 byte

} while index < 3

do {

index—

memory.word = memory.word << 1 byte

} while index > 0

The learning goals of this assignment is the use of shifts and loops.

Hint: There is an assembly language shift instruction that makes this program a lot easier. Look

for it!

Program 1C: Moving the sprite across multiple words in memory
Write a MIPS assembly program that when run in MARS at 25 instructions/second will display

in the Memory .data segment a “sprite” that moves across multiple words.

Assuming that you chose a “background” of the hex digits 0 and a “sprite” of the hex digits e, a

“time lapse” series of snapshots of the Memory segment display would look like the data below:

Time 1: 0xeeeeeeee 00000000 00000000 00000000

Time 2: 0x00000000 eeeeeeee 00000000 00000000

Time 3: 0x00000000 00000000 eeeeeeee 00000000

Time 4: 0x00000000 00000000 00000000 eeeeeeee

Time 5: 0x00000000 00000000 eeeeeeee 00000000

Time 6: 0x00000000 eeeeeeee 00000000 00000000

Time 7: 0xeeeeeeee 00000000 00000000 00000000

You may choose the hex digits used for the “sprite” – select hex digits that have as much contrast

as possible for best visibility.

The learning goals of this assignment is the use of memory storage manipulation and loops.

(Note: Shift will not work here, but load words and store words will.) Manipulate your load and

store addresses by adding and subtracting from them to move the sprite across the words. Also

use a loop (or two) as part of this assignment.

Turn this program in as hwk1a.asm, hwk1b.asm, and hwk1c.asm via paper and electronic copy

to Canvas.

Grading

Each homework assignment is worth 10 points. Be careful to include all comments and format

correctly, as directed in the beginning of this file.

